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Why do we care about uncertainty?
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A note on
SOFTMAX







I [1737 s import numpy as np

TR [[79]% samples = np.array([l, 2.0, 0.002, 0.992])

In [80]: def softmax(inp):
return np.exp(inp)/(np.sum(np.exp(inp)))

In [81]: 1 softmax(samples)

Out[81l]: array([0.19689188, 0.53520761, 0.07257748, 0.19532303])

In [821] s 1 samples = np.array([-0.002, -0.1, -0.99, 0.0000017])

In [[83]: 1 softmax(samples)

Out[83]: array([0.30478768, 0.27633542, 0.11347873, 0.30539817])




4 x* 5

(a) Arbitrary function f(x) as a function of (b) o(f(x)) as a function of data x (softmax
data x (softmax input) output)

Source: Uncertainty in Deep Learning - PhD Thesis
(Gal, 2016)
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Demo time

Code:


https://github.com/rsilveira79/intents_uncertainty/blob/master/intent_classifier_uncertainty_mc_dropout.ipynb

Language of



Types of Uncertainty

Model uncertainty (epistemic, reducible) = uncertainty in model (either model
parameters or model structure) — more data helps

"epistemic" — Greeg "episteme" = knowledge

Source: Uncertainty in Deep Learning
(Yarin Gal, 2016)




Types of Uncertainty

Aleatoric uncertainty (stochastic, irreducible) = uncertainty in data (noise) —
more data doesn't help

"Aleatoric" — Latin "aleator" = "dice player’s”

Can be further divided:

e Homoscedastic — uncertainty is same for all inputs
e Heteroscedastic — observation (uncertainty) can vary with input X

Source: Uncertainty in Deep Learning
(Yarin Gal, 2016)




Frequentist vs Bayesian view of the world




Frequentist vs Bayesian view of the world (2)

Frequentist

e Datais considered random

e Model parameters are fixed

e Probabilities are
fundamentally related to
frequencies of events

Source:

Bayesian

Data is considered fixed
Model parameters are
"random" (conditioned to
observations - sampled from
distribution)

Probabilities are
fundamentally related to their
own knowledge about an event


https://github.com/fonnesbeck/intro_stat_modeling_2017




Bayes Inference 101

P(fly) =


https://github.com/fonnesbeck/intro_stat_modeling_2017

Bayes Inference 101

P(0ly) =


https://github.com/fonnesbeck/intro_stat_modeling_2017

Bayes Inference 101

P(fly) =



https://github.com/fonnesbeck/intro_stat_modeling_2017

Bayes Inference 101

P(fly) =



https://github.com/fonnesbeck/intro_stat_modeling_2017

Bayes Inference 101

P(fly) =


https://github.com/fonnesbeck/intro_stat_modeling_2017

Further reading
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PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Frequentism and Bayesianism: A Python-driven
Primer

Jake VanderPlas*"

Abstract—This paper presents a brief, semi-technical comparison of the es-
sential features of the frequentist and Bayesian approaches to statistical infer-
ence, with several illustrative examples implemented in Python. The differences
between frequentism and Bayesianism fundamentally stem from differing defini-
tions of probability, a philosophical divide which leads to distinct approaches
to the solution of statistical problems as well as contrasting ways of asking
and answering questions about unknown parameters. After an example-driven
discussion of these differences, we briefly compare several leading Python sta-
tistical packages which implement frequentist inference using classical methods
and Bayesian inference using Markov Chain Monte Carlo."

Index Terms—statistics, frequentism, Bayesian inference

Introduction

One of the first things a scientist in a data-intensive field
hears about statistics is that there are two different approaches:
frequentism and Bayesianism. Despite their importance, man;
researchers never have opportunity to learn the distinctions
between them and the different practical approach

This paper seeks to synthesize the philosophical and prag-
matic aspects of this debate, so that scientists who use these
approaches might be better prepared to understand the tools
available to them. Along the way we will
mental philosophical disagreement between
Bayesianism, explore the practical aspects of how this dis-
agreement affects data analysis, and discuss the that these
practices may affect the interpretation of

advanced Bayesian and frequentist diagnostic tests are left
out in favor of illustrating the most fundamental aspects of
the approaches. For a more complete treatment, see, e.g.
[Wasserman2004] or [Gelman2004].

The Disagreement: The Definition of Probability
Fundamentally, the disagreement between frequentists and
Bayesians concerns the definition of probability.

For frequentists, probability only has meaning in terms of
a limiting case of repeated measurements. That is, if an
astronomer measures the photon flux F from a given non-

riable star, then measures it again, then again, and so on,
each time the result will be slightly different due to the
statistical error of the measuring device. In the limit of many
measurements, the frequency of any given value indicates
the probability of measuring that value. For frequentis
probabilities are fundamentally related to frequencies of
events. This means, for example, that in a strict frequentist
view, it is meaning] o talk about the probability of the rrue
flux of the star: the true flux is, by definition, a single fixed
value, and to talk about an extended frequency distribution for
a fixed value is nonsense.

For Bayesia the concept of probability is extended to
cover degrees of certainty about statements. A Bayesian
might claim to know the flux F of a star with some probability
P(F): that probability can certainly be estimated from frequen-

Source: Fre
Python-driven Primer (Jake VanderPlas, 2014)

quentism and Bayesianism: A



Gausslian



Johann Carl Friedrich Gauss
(1777 - 1855)




Gaussian Basics (1)

Source: YouTube - Machine learning - Introduction to
Gaussian processes (Nando de Freitas, 2013)




Gaussian Basics (2)
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Source: YouTube - Machine learning - Introduction to
Gaussian processes (Nando de Freitas, 2013)




Gaussian Basics (3) - from joint to conditional dist.

A |:$1] NN(llu'l] [le 212]) A
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Source: YouTube - Machine learning - Introduction to

Gaussian processes (Nando de Freitas, 2013)



Gaussian Basics (4) - Multivariate Gaussian Dist.
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Source: YouTube - Machine learning - Introduction to
Gaussian processes (Nando de Freitas, 2013)




Gaussian Basics (4) - Multivariate Gaussian Dist.
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Source: YouTube - Machine learning - Introduction to
Gaussian processes (Nando de Freitas, 2013)




Gaussian Basics (4) - Multivariate Gaussian Dist.

H+3 5 Ox3
f(x)
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Where have data
Iz + confidence (lower uncertainty)
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Source: YouTube - Machine learning - Introduction to
Gaussian processes (Nando de Freitas, 2013)




Gaussian Processes (1)

e Generalization of multivariate gaussian distribution to infinitely many
variables

e BAYESIAN NON-PARAMETRIC = # parameters grows w/ size of dataset =
infinitely parametric

e GP are distribution over functions (not point estimates)

e (Can be seen as bayesian version of SVM

e Uses kernels as SVM methods



Kernel Trick (recap)

Projects non-linear separable input into high-order linear separable space

Data projected to R~2 (nonseparable)

0.0
X Label

Data in R™3 (separable)

-1.0

00 05
X Label

Source:


https://goo.gl/kxLepp

Gaussian Processes (2)

e GP = distribution over functions (or high dimensional vectors)
e GP is fully specified by:

o Mean vector u

o Covariance matrix )

f(x) ~ GP(m(z), k(z,z"))
m(zx) = E[f(z)]
k(z,2') = E[f(z) — m(z))(f(2) — m(a"))"]

e Learningin GP = finding suitable properties for the covariance function










Covariance Functions - Squared Exponential

Covariance Matrix K as a function of x - x'

10.0
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Source:


https://docs.pymc.io/

Covariance Functions - Exponential

Source:


https://docs.pymc.io/

Covariance Functions - Matern 5/2
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Source:


https://docs.pymc.io/

Covariance Functions - Matern 3/2

Source:


https://docs.pymc.io/

Covariance Functions - Cosine
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Source:


https://docs.pymc.io/
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Demo time

Code:


https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/gaussian_process_PyMC3.ipynb

Bayes

Deep
Learning



Intuition (1)

Non-Bayesian Bayesian

Source:


https://ericmjl.github.io/bayesian-deep-learning-demystified/

Intuition (2) - From this ...
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Source:


https://ericmjl.github.io/bayesian-deep-learning-demystified/

Intuition (3) - ... to this
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Source:


https://ericmjl.github.io/bayesian-deep-learning-demystified/

Bayes by Backprop (1)

e Each weight wis a distribution (instead of single point estimate)
e Backpropagation-compatible algorithm to compute distribution over w

Source: Weight Uncertainty in Neural Networks
(Blundell et al, 2015)



Bayes by Backprop (2)

MAP Bayesian approach: data is
w — argmad.y, log P(’U)‘D) fixed, update model beliefs (w)

= argmax,, log(D|w) + log P(w)

mean gradients standard deviation gradients
(and weights) (and weights)
of of A — of € _ 9f
A — p 8 . 1 B | 8
BT ow | du w " 14exp(—p) p

’u,%'u—a,A'u p%p—a.Ap

Source: Weight Uncertainty in Neural Networks
(Blundell et al, 2015)




Bayes by Backprop (3) - MNIST

Algorithm Algorithm

—— Bayes by Backprop : Bayes by Backprop

Dropout Dropout
—— Vanilla SGD Vanilla SGD

Source: Weight Uncertainty in Neural Networks
(Blundell et al, 2015)
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NN

w/ dropout

w/o dropout

pout: A Simple Way to Prevent Neural

Networks from Overfitting (Srivastava et al, 2014)

Source: Dro

1 NN w/ dropout = ensemble of 2" thinned networks

KEY IDEA




Monte Carlo Dropout (MC Dropout) (1)

e MCdropout is equivalent to performing T stochastic forward passes
through the network and averaging the results (model averaging)

(y*) ~ = > B ()

Var(y*) ~ 1 lzp
+ 230 97 ()T 5 () T = SN
— E(y*)"E(y*)

Source: Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning (Gal et al, 2016),
Uncertainty in Deep Learning - PhD Thesis (Gal, 2016)



Monte Carlo Dropout (MC Dropout) (2)

e In practice, given a point x:
o Drop units at test time;
o Repeatntimes(e.g. 10, 100, 200);
o Look at the mean and variance;

def uncertainity estimate(X, model, iters, 12=0.005, range fn=trange):
outputs = np.hstack([model(X[:, np.newaxis]).data.numpy() for i in range fn(iters)])
y_mean = outputs.mean(axis=1)
y_variance = outputs.var(axis=1)

tau = 12 * (l-model.dropout p) / (2*N*model.decay)
y _variance += (1/tau)

y_std = np.sqgrt(y_variance) #+ (1/tau)

return y mean, y std

Source: Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning (Gal et al, 2016),
Uncertainty in Deep Learning - PhD Thesis (Gal, 2016)



Monte Carlo Dropout (MC Dropout) (3)

average loss: U.

RESTART NEW DATA

Source: Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning (Gal et al, 2016),
Uncertainty in Deep Learning - PhD Thesis (Gal, 2016)


http://www.youtube.com/watch?v=PQCS-RGcFMc
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Demo time

Code:


https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/uncertainty_mc_dropout.ipynb

Deep Ensembles (1)

e Non-bayesian method
e High quality uncertainty predictions
a. Not over-confident on out-of-distribution examples

e Model don't need to have dropout
e Basic receipt:

a. Use proper scoring rule (loss function) - NLL for regression
b. Use adversarial inputs (smooth predictions)
c. Train ensemble of classifiers

Source: Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles (Lakshminarayanan et al, 2017)




Deep Ensembles (2)

e Scoring Rules (Regression) mean — no variance in

MSE loss

MSE = 22{—1 (yn — .U(wn)

)2

mean
2

2

NLL = log 93(z) | m‘} - constant

2|"0

variance

Source: Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles (Lakshminarayanan et al, 2017)




Deep Ensembles (3)

200

100

0

Source: Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles (Lakshminarayanan et al, 2017)



Datasets

Boston housing

Concrete
Energy
Kin8nm

Naval propulsion plant
Power plant
Protein
Wine

Yacht

Year Prediction MSD

} PBP

3.01 +0.18
5.67 + 0.09
1.80 £ 0.05
0.10 £ 0.00
0.01 &= 0.00
4.12 + 0.03
4.73 £0.01
0.64 + 0.01
1.02 + 0.05
8.88 = NA

Deep Ensembles (4)

RMSE
MC-dropout

2.97 £ 0.85
5.23 £ 0.53
1.66 £ 0.19
0.10 £ 0.00
0.01 £ 0.00
4.02 + 0.18
4.36 + 0.04
0.62 + 0.04
1.11 + 0.38
8.85 = NA

Deep Ensembles

3.28 +1.00
6.03 £ 0.58
2.09 + 0.29
0.09 + 0.00
0.00 £ 0.00
4.11 £ 0.17
4.71 £ 0.06
0.64 £+ 0.04
1.58 + 0.48
8.89 £ NA

Source: Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles (Lakshminarayanan et al, 2017)

PBP

2.57 £0.09
3.16 & 0.02
2.04 £0.02
-0.90 = 0.01
-3.73 £ 0.01
2.84 £0.01
2.97 £0.00
0.97 £0.01
1.63 £ 0.02
3.60 £ NA

NLL
MC-dropout

2.46 £ 0.25
3.04 + 0.09
1.99 £ 0.09
-0.95 + 0.03
-3.80 £ 0.05
2.80 £ 0.05
2.89 £0.01

0.93 £ 0.06
1.55 = 0:12
3.59 £ NA

Deep Ensembles

241 £ 0.25
3.06 + 0.18
1.38 £+ 0.22
-1.20 £ 0.02
-5.63 £ 0.05
2.79 + 0.04
2.83 +0.02
0.94 + 0.12
1.18 + 0.21
335+ NA




Deep Ensembles (5)
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Source: Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles (Lakshminarayanan et al, 2017)



'
&%

Demo time

Code:


https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/deep_ensemble_uncertainty_Pytorch.ipynb

Uncertainty in Discrete-Continuous Data

All Days Rainy Days Log on Rainy Days
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Source: Quantifying Uncertainty in Discrete-Continuous and
Skewed Data with Bayesian Deep Learning (Blundell et al, 2015)



Uncertainty in Recommender Systems  Tab2@la

Yy \ Taboola’s recommender system

i - Recommendation —
Browser request —1 Frontend Machines ‘ Targets repository |

A
RPM = CTR x CPC 1000
ranking model candidation model

user click behavior  :

RPM lift | 0% 1.2% | 2.9%

SPONSORED CONTENT YOU MAY LIKE

DDN

Ji 4 !
1,000,000 People Use This App To Learn Unbelievable: WWII Ship Re-Discovered What Does Toyota Do with Its Used Hybrid
Languages off California - Watch Batteries? Puts Them to Better Use

sbbel Dailyma Toyota

Source: Deep density networks and uncertainty
in recommender systems (Zeldes et al, 2017)






Take #1

Have free time?
Study Bayesian Stats

(also if doesn't have free time)



Take #2

Probabilistic Programming
(e.g. GP) can be a powerful tool to
master - PyM(C3, Pyro.ai, Stan

(specially for small datasets)



Take #3

For Bayesian Deep Learning
e stay tuned w/ latest developments
(Cambridge, Deep Mind, Uber)
e always check uncertainty quality
e try different approaches






Uncertainty in Deep Learning Home  Schedule  Accepted Papers

Accepted Papers

Note: Papers listed here do not constitute as proceedings for this workshop.

1. To Trust Or Not To Trust A Classifier Heinrich Jiang, Been Kim, Maya Gupta
2. Ambient Hidden Space of Generative Adversarial Networks Xinhan Di, Penggian Yu, Meng Tian

3. Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion Jacob Buckman, Danijar Hafner, George Tucker, Eugene |

4. Deep Contextual Multi-armed Bandits Mark Collier, Hector Urdiales Llorens

5. Understanding Deep Learning Performance through an Examination of Test Set Difficulty: A Psychometric Case Study John P. Lalor, Hao W
Yu

7. Deep Matrix-variate Gaussian Processes Young-Jin Park, Piyush M. Tagade, Han-Lim Choi

8. Countdown Regression: Sharp and Calibrated Survival Predictions Anand Avati, Tony Duan, Kenneth Jung, Nigam Shah, Andrew Ng

Source: https://sites.google.com/view/udl2018/accepted-papers



https://sites.google.com/view/udl2018/accepted-papers

Golden Sponsor

Conference on Uncertainty in Artificial Intelligence
Monterey, California, USA

August 6 — 10, 2018 UBER

Uai2018 B Microsoft

O

%

hﬁj lsNEP Research
16,

Google
1TBERG

Artificial
Intelligence

Bronze Sponsor

The
Alan Turing
Institute

facebook

Startup Sponsor

Noodle.ai

ENTERPRISE ARTIFICIAL INTELLIGENCE

Source: http://auai.org/uai2018/index.php



http://auai.org/uai2018/index.php

Carl Edward Rasmussen and Christopher K. I. Williams

Source: http://www.gaussianprocess.org/gpml/



http://www.gaussianprocess.org/gpml/

BH UNIVERSITY OF
¥ CAMBRIDGE

Uncertainty in Deep Learning

Yarin Gal

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Gonville and Caius College September 2016



http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf

DDDDDD
EEEEE

AAAAAAAAA

¢ . BAYESIAN
METHODS

Hackers

Probabilistic
Programming and
Bayesian Inference

CAMERON DAVIDSON-PILON

Source: https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers



https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

Nice Repos


https://github.com/fonnesbeck/bayesian_mixer_london_2017
https://ericmjl.github.io/bayesian-deep-learning-demystified/
https://github.com/yaringal

Nice blog posts

https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://mlg.eng.cam.ac.uk/yarin/blog 2248.html
https://www.nitarshan.com/bayes-by-backprop/



https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
https://www.nitarshan.com/bayes-by-backprop/
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