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Why do we care about uncertainty?



A note on 
SOFTMAX







Source: Uncertainty in Deep Learning - PhD Thesis 
(Gal, 2016)



Demo time
Code: 
https://github.com/rsilveira79/intents_uncertainty/blob/master/intent_classifier_uncertainty_mc_dropout.ipynb  

https://github.com/rsilveira79/intents_uncertainty/blob/master/intent_classifier_uncertainty_mc_dropout.ipynb


Language of 
uncertainty



Types of Uncertainty

Source: Uncertainty in Deep Learning 
(Yarin Gal, 2016) 

Model uncertainty (epistemic, reducible) = uncertainty in model (either model 
parameters or model structure) → more data helps

"epistemic" → Greeg "episteme" = knowledge



Types of Uncertainty

Source: Uncertainty in Deep Learning 
(Yarin Gal, 2016) 

Aleatoric uncertainty (stochastic, irreducible) = uncertainty in data (noise) → 
more data doesn't help

"Aleatoric" → Latin "aleator" = “dice player’s"

Can be further divided:

● Homoscedastic → uncertainty is same for all inputs
● Heteroscedastic → observation (uncertainty) can vary with input X



Frequentist vs Bayesian view of the world



Frequentist vs Bayesian view of the world (2)

Frequentist

● Data is considered random
● Model parameters are fixed
● Probabilities are 

fundamentally related to 
frequencies of events

Source: 
https://github.com/fonnesbeck/intro_stat_modeling_2017 

Bayesian

● Data is considered fixed
● Model parameters are 

"random" (conditioned to 
observations - sampled from 
distribution)

● Probabilities are 
fundamentally related to their 
own knowledge about an event

https://github.com/fonnesbeck/intro_stat_modeling_2017




Bayes Inference 101

Source: 
https://github.com/fonnesbeck/intro_stat_modeling_2017 

https://github.com/fonnesbeck/intro_stat_modeling_2017


Bayes Inference 101

Source: 
https://github.com/fonnesbeck/intro_stat_modeling_2017 

Posterior Probability → probability of model parameters given 
the data

https://github.com/fonnesbeck/intro_stat_modeling_2017


Bayes Inference 101

Source: 
https://github.com/fonnesbeck/intro_stat_modeling_2017 

Likelihood of observations → information on the observed data ~ 
proportional to likelihood in frequentist approach

https://github.com/fonnesbeck/intro_stat_modeling_2017


Bayes Inference 101

Source: 
https://github.com/fonnesbeck/intro_stat_modeling_2017 

Prior Probability → what is known about the model before 
observing the data

https://github.com/fonnesbeck/intro_stat_modeling_2017


Bayes Inference 101

Source: 
https://github.com/fonnesbeck/intro_stat_modeling_2017 

Normalizing Constant  → model evidence, 
usually not considered in bayesian inference  

https://github.com/fonnesbeck/intro_stat_modeling_2017


Further reading

Source: Frequentism and Bayesianism: A 
Python-driven Primer (Jake VanderPlas, 2014) 



Gaussian 
Processes



Johann Carl Friedrich Gauss
(1777 - 1855)



Gaussian Basics (1)

Source: YouTube - Machine learning - Introduction to 
Gaussian processes (Nando de Freitas, 2013) 
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Gaussian Basics (2)

Source: YouTube - Machine learning - Introduction to 
Gaussian processes (Nando de Freitas, 2013) 
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Gaussian Basics (3) - from joint to conditional dist.

Source: YouTube - Machine learning - Introduction to 
Gaussian processes (Nando de Freitas, 2013) 
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Gaussian Basics (4) - Multivariate Gaussian Dist.

Source: YouTube - Machine learning - Introduction to 
Gaussian processes (Nando de Freitas, 2013) 
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Gaussian Basics (4) - Multivariate Gaussian Dist.

Source: YouTube - Machine learning - Introduction to 
Gaussian processes (Nando de Freitas, 2013) 
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Gaussian Basics (4) - Multivariate Gaussian Dist.

Source: YouTube - Machine learning - Introduction to 
Gaussian processes (Nando de Freitas, 2013) 

f(x)

x
x1 x2 x3
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Where have data
+ confidence (lower uncertainty)

Where don't have data
- confidence (higher uncertainty)



Gaussian Processes (1)

● Generalization of multivariate gaussian distribution to infinitely many 
variables

● BAYESIAN NON-PARAMETRIC =  # parameters grows w/ size of dataset = 
infinitely parametric

● GP are distribution over functions (not point estimates)
● Can be seen as bayesian version of SVM
● Uses kernels as SVM methods



Kernel Trick (recap)

Projects non-linear separable input into high-order linear separable space

Source: https://goo.gl/kxLepp 

https://goo.gl/kxLepp


Gaussian Processes (2)

● GP = distribution over functions (or high dimensional vectors)
● GP is fully specified by:

○ Mean vector 𝞵
○ Covariance matrix ∑

● Learning in GP = finding suitable properties for the covariance function



Gaussian Processes (3) - Regression



Gaussian Processes (4) - Regression



Covariance Functions - Squared Exponential

Source:  https://docs.pymc.io/ 

https://docs.pymc.io/


Covariance Functions - Exponential

Source:  https://docs.pymc.io/ 

https://docs.pymc.io/


Covariance Functions - Matern 5/2

Source:  https://docs.pymc.io/ 

https://docs.pymc.io/


Covariance Functions - Matern 3/2

Source:  https://docs.pymc.io/ 

https://docs.pymc.io/


Covariance Functions - Cosine

Source:  https://docs.pymc.io/ 

https://docs.pymc.io/


Demo time
Code: 
https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/gaussian_process_PyMC3.ipynb 

https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/gaussian_process_PyMC3.ipynb


Bayes  
meets 
Deep 

Learning Or more logically, deep 
learning meets 
Bayesian inference



Intuition (1)

Source: https://ericmjl.github.io/bayesian-deep-learning-demystified/ 

https://ericmjl.github.io/bayesian-deep-learning-demystified/


Intuition (2) - From this ...

Source: https://ericmjl.github.io/bayesian-deep-learning-demystified/ 

https://ericmjl.github.io/bayesian-deep-learning-demystified/


Intuition (3) - … to this

Source: https://ericmjl.github.io/bayesian-deep-learning-demystified/ 

https://ericmjl.github.io/bayesian-deep-learning-demystified/


Bayes by Backprop (1)

Source: Weight Uncertainty in Neural Networks 
(Blundell et al, 2015) 

● Each weight w is a distribution (instead of single point estimate)
● Backpropagation-compatible algorithm to compute distribution over w



Bayes by Backprop (2)

mean gradients 
(and weights)

Source: Weight Uncertainty in Neural Networks 
(Blundell et al, 2015) 

standard deviation gradients 
(and weights)

Bayesian approach: data is 
fixed, update model beliefs (w) 



Bayes by Backprop (3) - MNIST

Source: Weight Uncertainty in Neural Networks 
(Blundell et al, 2015) 



Source: Dropout: A Simple Way to Prevent Neural 
Networks from Overfitting  (Srivastava et al, 2014) 

A quick note on dropout

w/o dropout w/ dropout

KEY IDEA
1 NN w/ dropout = ensemble of 2n thinned networks 

w/o dropout w/ dropout

y1 y1~

y2 y2~

r1

r2

rj
(l)= 

Bernoulli(p)



Monte Carlo Dropout (MC Dropout) (1)

Source: Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning (Gal et al, 2016), 
Uncertainty in Deep Learning - PhD Thesis (Gal, 2016)

● MC dropout is equivalent to performing T stochastic forward passes 
through the network and averaging the results (model averaging)

p → probability of units 
not being dropped



Monte Carlo Dropout (MC Dropout) (2)

Source: Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning (Gal et al, 2016), 
Uncertainty in Deep Learning - PhD Thesis (Gal, 2016)

● In practice, given a point x:
○ Drop units at test time;
○ Repeat n times (e.g. 10, 100, 200);
○ Look at the mean and variance;



Monte Carlo Dropout (MC Dropout) (3)

Source: Dropout as a Bayesian Approximation: Representing 
Model Uncertainty in Deep Learning (Gal et al, 2016), 
Uncertainty in Deep Learning - PhD Thesis (Gal, 2016)

http://www.youtube.com/watch?v=PQCS-RGcFMc


Demo time
Code: 
https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/uncertainty_mc_dropout.ipynb 

https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/uncertainty_mc_dropout.ipynb


Deep Ensembles (1)

Source: Simple and Scalable Predictive Uncertainty Estimation 
using Deep Ensembles (Lakshminarayanan et al, 2017) 

● Non-bayesian method
● High quality uncertainty predictions

a. Not over-confident on out-of-distribution examples
● Model don't need to have dropout
● Basic receipt:

a. Use proper scoring rule (loss function) - NLL for regression
b. Use adversarial inputs (smooth predictions)
c. Train ensemble of classifiers



Deep Ensembles (2)

Source: Simple and Scalable Predictive Uncertainty Estimation 
using Deep Ensembles (Lakshminarayanan et al, 2017) 

● Scoring Rules (Regression) mean → no variance in 
MSE loss

mean

variance



Deep Ensembles (3)

Source: Simple and Scalable Predictive Uncertainty Estimation 
using Deep Ensembles (Lakshminarayanan et al, 2017) 

MSE NLL Adversarial 
training

Ensemble 
(M=5)



Deep Ensembles (4)

Source: Simple and Scalable Predictive Uncertainty Estimation 
using Deep Ensembles (Lakshminarayanan et al, 2017) 



Deep Ensembles (5)

Source: Simple and Scalable Predictive Uncertainty Estimation 
using Deep Ensembles (Lakshminarayanan et al, 2017) 



Demo time
Code: 
https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/deep_ensemble_uncertainty_Pytorch.ipynb 

https://github.com/rsilveira79/bayesian_notebooks/blob/master/uncertainty_notebooks/deep_ensemble_uncertainty_Pytorch.ipynb


Uncertainty in Discrete-Continuous Data

Source: Quantifying Uncertainty in Discrete-Continuous and 
Skewed Data with Bayesian Deep Learning (Blundell et al, 2015) 



Uncertainty in Recommender Systems

Source: Deep density networks and uncertainty 
in recommender systems  (Zeldes et al, 2017) 



Take 
home



Take #1

Have free time?
Study Bayesian Stats

(also if doesn't have free time)



Take #2

Probabilistic Programming
(e.g. GP) can be a powerful tool to 

master - PyMC3, Pyro.ai, Stan
(specially for small datasets)



Take #3
For Bayesian Deep Learning

● stay tuned w/ latest developments 
(Cambridge, Deep Mind, Uber)

● always check uncertainty quality
● try different approaches



Probe 
further



Source: https://sites.google.com/view/udl2018/accepted-papers 

https://sites.google.com/view/udl2018/accepted-papers


Source: http://auai.org/uai2018/index.php 

http://auai.org/uai2018/index.php


Source: http://www.gaussianprocess.org/gpml/ 

http://www.gaussianprocess.org/gpml/


Source: http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf 

http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf


Source: https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers 

https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers


Nice Repos

● https://github.com/fonnesbeck/bayesian_mixer_london_2017
● https://ericmjl.github.io/bayesian-deep-learning-demystified/
● https://github.com/yaringal

https://github.com/fonnesbeck/bayesian_mixer_london_2017
https://ericmjl.github.io/bayesian-deep-learning-demystified/
https://github.com/yaringal


Nice blog posts

● https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
● http://katbailey.github.io/post/gaussian-processes-for-dummies/
● http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
● https://www.nitarshan.com/bayes-by-backprop/ 

https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
https://www.nitarshan.com/bayes-by-backprop/



