
{ REST }
vs

Battle of API’s

Who am I?
● Software Engineer at Sensedia

● MBA in java projects

● Java and microservice
enthusiastic

Agenda
● Microservices

● REST

● gRPC

● Demo

● Questions

Moving to Microservices

Feature A

Feature B

Feature C

Monolith

Microservice Microservice

Microservices

Microservice

● Communication

● Security / Authentication

● Network Communication Speed

● Language Interoperability

Challenges
with Microservices

Communication

Microservice

Microservice

Microservice

HTTP + JSON
REpresentational State Transfer

Microservice

Microservice

BD

REST - Representational State Transfer

GET

GET

POST

PUT

DELETE

/movies

/movies/{movieId}

/movies

/movies/{movieId}

/movies/{movieId}

● Web already built on top of HTTP

● Easy to understand

● Variety of http implementation in
any languages

● Loose coupling between client
and server

Representational
State Transfer

● Good things
● Bad things

● Operations are difficult to model

● Streaming is difficult to
implement

● Bi-directional streaming is not
possible

● Inefficient, textual representation
are not optimal for networks

Representational
State Transfer

● Good things
● Bad things

gRPC is going to fix all of those
problems?

Yes!!!

What is RPC and gRPC?

● A high-performance open-source
universal RPC framework

● Based on “Stubby” (Google’s
internal RPC system)

● Part of Cloud Native Computing
Foundation

So what makes gRPC so
effective?

● Strongly typed

● Rules for making backwards
compatible changes

● Efficient binary data
representation for network
transmission

● Comprehensive style guide

Protocol Buffers

Protocol buffers are Google's
language-neutral,
platform-neutral, extensible
mechanism for serializing
structured data.

Interface Definition
Language

The API definition and structure
of the payload messages.

syntax = “proto3”;

message PersonRequest {

 string name = 1;
 int32 age = 2;
}

message PersonResponse {

 int32 id = 1;
 string name = 2;
 int32 age = 3;
}

service PersonService {

 rpc create(PersonRequest) returns (PersonResponse);

}

Define once, generates
well-structured code for all
supported language!

Ruby
microservice

gRPC server

Go microservice

gRPC server

gRPC
Stub

Java
microservice

gRPC
Stub

Python
microservice

gRPC server

gRPC
Stub

Multiple Language Support

Multiple Platform Support

Works over HTTP 2

History of HTTP

HTTP 0.9

1991

HTTP 1

1996

HTTP 2

2015

HTTP 1.1

16 years without evolution or
improvement

1999

HTTP 2

● Multiplexing
● Bidirectional Streaming
● HTTPS
● Performance

HTTP 2

HTTP 1.x

HTTP 2

● Multiplexing
● Bidirectional Streaming
● HTTPS
● Performance

HTTP 2

● Multiplexing
● Bidirectional Streaming
● HTTPS

○ SSL/TLS
○ Token authentication
○ Channel credentials
○ Call credentials

● Performance

HTTP 2

● Multiplexing
● Bidirectional Streaming
● HTTPS
● Performance

HTTP 1.1

HTTP 2

Connection options

The client sends a
single request and
gets back a single
response

Unary RPC

The server sends
back a stream of
responses after
getting the client’s
request message

Server streaming
RPC

The client sends a
stream of requests
to the server
instead of a single
request

Client streaming
RPC

The call is initiated
by the client calling
the method and the
server receiving
the client
metadata, method
name, and deadline

Bidirectional
streaming RPC

Who is using gRPC?

Companies

Community

Why mainly Google and Netflix
are using gRPC?

Performance

Sources: https://cloud.google.com/blog/products/gcp/announcing-grpc-alpha-for-google-cloud-pubsub

https://cloud.google.com/blog/products/gcp/announcing-grpc-alpha-for-google-cloud-pubsub

Performance

Sources: https://blog.gopheracademy.com/advent-2015/etcd-distributed-key-value-store-with-grpc-http2,
https://auth0.com/blog/beating-json-performance-with-protobuf

https://blog.gopheracademy.com/advent-2015/etcd-distributed-key-value-store-with-grpc-http2
https://auth0.com/blog/beating-json-performance-with-protobuf

Flexibility & Summary

Source: https://www.infoq.com/presentations/grpc

https://www.infoq.com/presentations/grpc

Demo

Where to use gRPC?

Use case

gRPC shines as a
way to connect
servers in
service-oriented
environments

Microservices

gRPC works just
as well in
client-server
applications,
where the client
application runs
on desktop or
mobile devices

Client-Server
Application

gRPC is also a way
to offer APIs over
the Internet, for
integrating
applications with
services from
third-party
providers

Integrations and
APIs

Do not use!

grpc-gateway
grpc-web (oct/18)

Browser-based
Web Applications

Questions?

We're Hiring!
sensedia.com/carreira

Campinas | Rio | São Paulo

Consultoria | P&D | Marketing &
Sales | ADM | RH

Thanks a million!

/larchanjo
/luram-archanjo

