
THE State of the state:

React State Management
IN 2019

@YTHECOMBINATOR

1PUB/42m

Bring me that!

🙋"🙋"🙋"

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal

REDUX-ACT

IMMER

https://github.com/GantMan/ReactStateMuseum

"Javascript Fatigue" by Eric Cle!"ons

HAS THE SO-CALLED
JAVASCRIPT FATIGUE
REACHED (REACT)
STATE MANAGEMENT?

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

Tldr;
Offload store management logic to a separate web
worker.

https://github.com/developit/stockroom

DEMO

HIGHLIGHTS:
↝ + Performance

↝ Good for CPU-bound store mutations

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

Tldr;
Declaratively describing the behaviour of your
application

FEATURING:
↝ A list of states

↝ One initial state

↝ A list of events that trigger transitions

DEMO

HIGHLIGHTS:
↝ Preciseness of specs

↝ Correctness of code

↝ Less unimportant state / Less if clauses

↝ Leverage knowledge from non-coders too

CONS:
↝ Surely an overkill for super simple components

↝ Lack of familiarity from developers and
designers

↝ Small ecosystem

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

Tldr;
Combine your local and remote state management

Key Concepts:
↝ DEFAULTS: Your base state. What you start with.

↝ RESOLVERS: Where all the magic happens to
retrieve and update your local data in the Apollo
cache.

DEMO

HIGHLIGHTS:
↝ Getting Apollo set up just for state management

can be a bit of work

↝ A natural way of querying and mutating state

cons:
↝ Surely an overkill for apps that don't heavily

depend on remote state

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

Tldr;
Redux best practices without the boilerplate.

https://github.com/jamiebuilds/unstated

https://github.com/pedronauck/reworm #

import React from 'react'

import { Provider, create } from 'reworm'

const { set, get } = create({ name: 'John' })

class App extends React.Component {

 componentDidMount() {

 set(prev $% ({ name: 'Peter' + prev.name }))

 }

 render() {

 return (

 <Provider>

 <div>{get(s $% s.name)}</div>

 </Provider>

)

 }

}

HIGHLIGHTS:
↝ - Boilerplate

↝ + Simplicity

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

Tldr;
Recreate Redux in our React app without actually
installing redux and react-redux

Key Concepts:
↝ CONTEXT: Provides a way to pass data through

the component tree without having to pass props
down manually at every level.

↝ HOOKS: Let you use state and other React
features without writing a class

DEMO

HIGHLIGHTS:
↝ Less boilerplate than redux itself

↝ No third-party dependencies

cons:
↝ Still carries some of redux boilerplate

↝ You might face a few perf issues

Split contexts that don't change together

function Button() {

 let theme = useContext(ThemeContext);

 &' The rest of your rendering logic

 return <ExpensiveTree className={theme} />;

}

Split your component in two, put memo in between

function Button() {

 let appContextValue = useContext(AppContext);

 let theme = appContextValue.theme; &' Your "selector"

 return <ThemedButton theme={theme} />

}

const ThemedButton = memo(({ theme }) $% {

 &' The rest of your rendering logic

 return <ExpensiveTree className={theme} />;

});

One component with useMemo inside

function Button() {

 let appContextValue = useContext(AppContext);

 let theme = appContextValue.theme; &' Your "selector"

 return useMemo(() $% {

 &' The rest of your rendering logic

 return <ExpensiveTree className={theme} />;

 }, [theme])

}

HAS THE SO-CALLED
JAVASCRIPT FATIGUE
REACHED (REACT)
STATE MANAGEMENT?

HAS THE SO-CALLED
JAVASCRIPT FATIGUE
REACHED (REACT)
STATE MANAGEMENT?

Maybe! 🤷
BUT SO HAS THE
VANILLA WAY OF
DOING THINGS!

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

https://github.com/pauldijou/redux-act

const serializeTodo = createAction('SERIALIZE_TODO');

serializeTodo(1);

&' return { type: 'SERIALIZE_TODO', payload: 1 }

const loading = createReducer({}, initialState.loading)

 .on(actions.fetch, () $% true)

 .on(actions.setQuery, () $% true)

const ids = createReducer({}, initialState.ids)

 .on(actions.setIds, (state, payload) $% [&&.payload])

 .on(actions.delete, (state, payload) $% {

 return [&&.state.filter((id) $% id))* payload)];

 });

HIGHLIGHTS:
↝ Less boilerplate than plain redux

↝ Piping syntax for reducers

Apollo link state

Unstated

Stockroom

alfa

MOBX

setState() Redux

CONTEXTHOOKS reworm Relay

React Automata freactal IMMER

REDUX-ACT

⚠ INTERMISSION ⚠
 Immutability

WHY:
↝ - Breakable

↝ + Debuggable

↝ + Performant

WHY:
↝ - Breakable

↝ + Debuggable

↝ + Performant

WHY:
↝ - Breakable

↝ + Debuggable

↝ + Performant

WHY:
↝ - Breakable

↝ + Debuggable

↝ + Performant

WHY:
↝ - Breakable

↝ + Debuggable

↝ + Performant

Full Reconciliation

REACT
Reconciliation

REACT + IMMUTABLE

WHY:
↝ - Breakable

↝ + Debuggable

↝ + Performant

Full Reconciliation
O(N^3)

REACT
Reconciliation O(N)

REACT + IMMUTABLE
O(LOGN)

https://github.com/immutable-js/immutable-js

😨 ~300 😨

https://github.com/kolodny/immutability-helper

import update from "i!"utability-helper"

const reducer = (state, action) $% {

 switch (action.type) {

 case ADD_TAG:

 return update(state, {

 [action.id]: {

 tags: {

 $push: [action.tag]

 }

 }

 })

 default:

 return state

 }

}

https://github.com/immerjs/immer

const map1 = { foo: 1, bar: 2 }
const map2 = I!"utable.Map(map1)

const { foo, bar } = map2

console.log(foo) &' undefined
console.log(bar) &' undefined

const map1 = { foo: 1, bar: 2 }
const map2 = produce(map1, draft $% {
 draft.foo += 10
})

const { foo, bar } = map2

console.log(foo) &' 11
console.log(map1.bar ++, bar) &' true

exposes a single
default function
that does all the
work

const map1 = { foo: 1, bar: 2 }
const map2 = produce(map1, draft $% {
 draft.foo += 10
})

const { foo, bar } = map2

console.log(foo) &' 11
console.log(map1.bar ++, bar) &' true

const map1 = { foo: 1, bar: 2 }
const map2 = produce(map1, draft $% {
 draft.foo += 10
})

const { foo, bar } = map2

console.log(foo) &' 11
console.log(map1.bar ++, bar) &' true

apply all your
changes to a
temporarily draft
State, which is a
proxy of
the currentState.

your objects and
arrays are really
JavaScript
objects and
arrays, so you
can do
everything you
would normally
do

const map1 = { foo: 1, bar: 2 }
const map2 = produce(map1, draft $% {
 draft.foo += 10
})

const { foo, bar } = map2

console.log(foo) &' 11
console.log(map1.bar ++, bar) &' true

&' add a tag to a todo

{

 &&.state,

 [action.id]: {

 &&.state[action.id],

 tags: [

 &&.state[action.id].tags,

 action.tag

]

 }

}

&' add a tag to a todo

state[action.id].tags.push(action.tag)

ALSO:
↝ ES5 Fallback

↝ Strongly typed

↝ Small (4KB)

↝ Currying

ALSO:
↝ Fast Auto freezing

↝ Equivalent perf to ImmutableJS

↝ Supports hooks!

⚠ ❌ ❌ ⚠

~ senior software engineer, Front-End
@beakyn

~ @ythecombinator on the webs

~ addicted to emojis, memes and beer

https://bit.ly/react-state-management-in-2019

THANKS!

@YTHECOMBINATOR

