

PROGRAMAÇÃO PARALELA Em machine learning

Igor Freitas Intel

NOTICES AND DISCLAIMERS

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at <u>www.intel.com</u>.

Performance results are based on testing as of Aug. 20, 2017 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document.

ARDUINO 101 and the ARDUINO infinity logo are trademarks or registered trademarks of Arduino, LLC.

Altera, Arria, the Arria logo, Intel, the Intel logo, Intel Atom, Intel Core, Intel Nervana, Intel Saffron, Iris, Movidius, OpenVINO, Stratix and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2019 Intel Corporation.

Programação Paralela em IA/ML Vs Programação Paralela "tradicional" (HPC)

Programação Paralela em ML Frameworks

Exemplo de código

Programação Paralela em IA/ML Vs Programação Paralela "tradicional" (HPC)

Programação Paralela em ML Frameworks Exemplo de código

Big Data Analytics HPC != Big Data Analytics != Inteligência Artificial ?

*Other brands and names are the property of their respective owners.

Trends in HPC + Big Data Analytics

https://www.intelnervana.com/framework-optimizations/

Big Data & HPC

Ambientes de Produção

https://www.intelnervana.com/framework-optimizations/

(intel)

Programação Paralela em IA/ML Vs Programação Paralela "tradicional" (HPC)

Programação Paralela em ML Frameworks Exemplo de código

INTEL® AI TOOLS PORTFOLIO OF SOFTWARE TOOLS TO EXPEDITE AND ENRICH AI DEVELOPMENT

τηρι νιτς		DEEP LEARNING			
Application Developers	OpenVINO ^{™†} Open <u>V</u> isual <u>I</u> nference & <u>N</u> eural Network Opti inference deployment on CPU/GPU/FPGA/VPU Caffe* & MXNet*	Intel® Movid imization toolkit for Optimized inference Uusing TensorFlow*, for all Intel® Movidius™ VPL & Caffe	Intel® Deep Learning Studio [‡] Open-source tool to compress deep learning development cycle		
	MACHINE LEARNING LIBRARIES	DEEP LEA	RNING FRAMEWORKS	COMMO	
TIRKAKIE 2	Python R Distributed	Now optimized for CPU	Optimiza	ations in progress and	
Data	• <u>Scikit-</u> • <u>Cart</u> • <u>MlLib (on</u> <u>learn</u> • <u>Random Spark)</u>	TersorFlow: Oxnet Caffe Spark	Caffe2 PY1	TÖRCH CNTK	
Scientists	• <u>Pandas Forest</u> • <u>Mahout</u> • <u>NumPy</u> • <u>e1071</u>	TensorFlow <u>MXNet</u> <u>Caffe</u> <u>BigDL*(Sp</u>	ark) Caffe2 PyTc	orch CNTK PaddlePaddle	
	ANALYTICS, MACHINE & DEE	P LEARNING PRIMITIVES	DEEP LEARN	ING GRAPH COMPILER	
FUUNDATION	Python* DAAL	MKL-DNN <u>clDNN</u>	Intel [®] nGraph	™ Compiler (Alpha)	
Eibrary Library Developers	Intel distribution Intel® Data Analytic optimized for Acceleration Library machine learning (incl machine learnin	s Open-source deep neural / network functions for g) CPU / integrated graphics	Open-sourced comp computations optimiz multip	iler for deep learning model zed for multiple devices from le frameworks	

† Formerly the Intel® Computer Vision SDK
*Other names and brands may be claimed as the property of others.
Developer personas show above represent the primary user base for each row, but are not mutually-exclusive
All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice.

software.intel.com/openvino-toolkit

INTEL[®] DISTRIBUTION OF OPENVINO[™] TOOLKIT WRITE ONCE, DEPLOY EVERYWHERE

An open source version is available at 01.org/openvinotoolkit

What's Inside Intel[®] Distribution of OpenVINO[™] toolkit

OS Support: CentOS* 7.4 (64 bit), Ubuntu* 16.04.3 LTS (64 bit), Microsoft Windows* 10 (64 bit), Yocto Project* version Poky Jethro v2.0.3 (64 bit)

An open source version is available at O1.org/openvinotoolkit (some deep learning functions support Intel CPU/GPU only).

INTEL® DEEP LEARNING DEPLOYMENT TOOLKIT For deep learning inference

Model Optimizer

Trained

- What it is: A python based tool to import trained models and convert them to Intermediate representation.
- Why important: Optimizes for performance/space with conservative topology transformations; biggest boost is from conversion to data types matching hardware.

Inference Engine

- What it is: High-level inference API
- Why important: Interface is implemented as dynamically loaded plugins for each hardware type. Delivers best performance for each type without requiring users to implement and maintain multiple code pathways.

GPU = Intel CPU with integrated graphics processing unit/Intel^ Processor Graphics

INTEL® VISION PRODUCTS

- Intel[®] Distribution of OpenVINO[™] toolkit: Computer vision & deep learning inference tool with common API
- 2. Portfolio of hardware for computer vision & deep learning inference, device to cloud
- 3. Ecosystem to cover the breadth of IoT vision systems

INTEL® VISION ACCELERATOR DESIGN PRODUCTS

Add to existing Intel[®] architectures for accelerated DL inference capabilities

13

A ON Spache

BigDL

HIGH-PERFORMANCE DEEP LEARNING FRAMEWORK FOR APACHE SPARK

UNIFIED ANALYTICS + AI PLATFORM DISTRIBUTED TENSORFLOW, KERAS AND BIGDL ON

ANALYTICS

APACHE SPARK

Reference Use Cases, AI Models, High-level APIs, Feature Engineering, etc.

software.intel.com/bigdl

https://github.com/intel-analytics/analytics-zoo

UNIFYING ANALYTICS + AI ON APACHE SPARK

Bringing Deep Learning to Big Data

For developers looking to run deep learning on Hadoop/Spark due to familiarity or analytics use

- Open Sourced Deep Learning Library for Apache Spark*
- Make Deep learning more Accessible to Big data users and data scientists.
- **Feature Parity** with popular DL frameworks like Caffe, Torch, Tensorflow etc.
- Easy Customer and Developer Experience
 - Run Deep learning Applications as Standard Spark programs;
 - Run on top of existing Spark/Hadoop clusters (No Cluster change)
- **High Performance** powered by Intel MKL and Multi-threaded programming.
- Efficient Scale out leveraging Spark architecture.

github.com/intel-analytics/BigDL

$\textbf{INTEL}^{\circledast} \textbf{NGRAPH}^{\textsf{TM}} \textbf{COMPILER}$

Open-source compiler enabling flexibility to run models across a variety of frameworks and hardware

*Other names and brands may be claimed as the property of others.

All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice

(intal)
(inter/

Integer Matrix Multiply Performance on Intel[®] Xeon[®] Platinum 8180 Processor

Enhanced matrix multiply performance on Intel® Xeon® Scalable Processor

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or

Configuration Details on Slide: 13

Conjuguation Details on Stude, 13 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performation and performation and performation and performation easist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance Source: Intel measured as of June 2017 Optimization to Notice: Intel's compliers may or may not optimization sets and other optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocessors. Therease test to evaluating to covered by this notice. Source: Intel

Lower

precision

Intel® Xeon® Scalable Processor Feature Overview

Feature	Details					
Socket	Socket P					
Scalability	2S, 4S, 8S, and >8S (with node controller support)					
CPU TDP	70W – 205W					
Chipset	Intel® C620 Series (code name Lewisburg)					
Networking	Intel® Omni-Path Fabric (integrated or discrete) 4x10GbE (integrated w/ chipset) 100G/40G/25G discrete options					
Compression and Crypto Acceleration	Intel® QuickAssist Technology to support 100Gb/s comp/decomp/crypto 100K RSA2K public key					
Storage	Integrated QuickData Technology, VMD, and NTB Intel® Optane™ SSD, Intel® 3D-NAND NVMe & SATA SSD					
Security	CPU enhancements (MBE, PPK, MPX) Manageability Engine Intel® Platform Trust Technology Intel® Key Protection Technology					
Manageability	Innovation Engine (IE) Intel® Node Manager Intel® Datacenter Manager					

19

Técnicas de HPC aplicadas para IA

libnumactl kmp_affinity

https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi

 \checkmark

Centros de Excelência em Inteligência Artificial - Intel Casos de sucesso

Performance 22.5x mais rápida em "Xeon Scalable Processors"

"...um processamento de multas que antes levava 45 horas agora poderá ser realizado em menos de 2 horas."

Desenvolvimento do modelo matemático

"Validador Cognitivo de Infrações de Trânsito"

ERPRO

Serviço Federal de Processamento de Dados

"Com isso, tivemos uma acurácia de 90% no sistema, além da automação de todo o projeto", disse Gustavo Rocha, chefe de divisão do SERPRO,"

Thiago Oliveira, superintendente de Engenharia de

Infraestrutura do SERPRO

TensorFlow for CPU

Aplicando técnica "Afinidade de Processos" (NUMA aware) no TensorFlow

intra op parallelism threads. Nodes that can use multiple threads to parallelize their execution will schedule the individual pieces into this pool.

inter op parallelism threads: All ready nodes are scheduled in this pool.

config = tf.ConfigProto() config.intra_op_parallelism_threads = 44 config.inter_op_parallelism_threads = 44 tf.Session(config=config)

Source: https://www.tensorflow.org/guide/performance/overview#optimizing_for_cpu

Programação Paralela em ML Vs Programação Paralela (HPC)

Programação Paralela em ML Frameworks

Exemplo de código

CPU op-mode(s):	32-bit, 64-bit
Byte Order:	Little Endian
CPU(s):	64
On-line CPU(s) list:	0-63
Thread(s) per core:	2
Core(s) per socket:	16
Socket(s):	2
NUMA node(s):	2
Vendor ID:	GenuineIntel
CPU family:	б
Model:	85
Model name:	Intel(R) Xeon(R) Platinum 8153 CPU @ 2.00GHz
Stepping:	4
CPU MHz:	1000.156
CPU max MHz:	2800.0000
CPU min MHz:	1000.0000
BogoMIPS:	4000.00
Virtualization:	VT-x
L1d cache:	32K
L1i cache:	32K
L2 cache:	1024K
L3 cache:	22528K
NUMA node0 CPU(s):	0-15,32-47
NUMA node1 CPU(s):	16-31,48-63

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 Flags: clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq d tes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic mo vbe popcnt tsc deadline timer aes xsave avx f16c rdrand lahf lm abm 3dnowprefetch epb cat l3 c dp l3 invpcid single intel pt spec ctrl ibpb support tpr shadow vnmi flexpriority ept vpid fsg sbase tsc adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt a avx512f avx512dq rdsee d adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xqetbv1 cqm llc cqm occu p llc cqm mbm total cqm mbm local dtherm ida arat pln pts hwp hwp act window hwp epp hwp pkq r

Entendendo o ambiente:

- Dual socket
- AVX-512 •
- 16 cores / socket
- 32 threads / socket
- Total: 64 threads

Técnicas de HPC aplicadas para IA

libnumactl kmp_affinity

https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi

model(data, train=False): conv = tf.nn.conv2d(data. conv1 weights. strides=[1, 1, 1, 1], padding= relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases)) pool = tf.nn.max pool(relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding= conv = tf.nn.conv2d(pool.conv2 weights. strides=[1, 1, 1, 1], padding= relu = tf.nn.relu(tf.nn.bias add(conv, conv2 biases)) pool = tf.nn.max pool(relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding= pool shape = pool.get shape().as list() reshape = tf.reshape(pool, [pool shape[0], pool shape[1] * pool shape[2] * pool shape[3]])

Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)

Add a 50% dropout during training only. Dropout also scales # activations such that no rescaling is needed at evaluation time. if train: hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)

hidden = tf.nn.dropout(hidden, 0.5, seed=SEED) return tf.matmul(hidden, fc2_weights) + fc2_biases

orint('Done')

Codigo de demonstração: MNIST

Topologia: Convolution + reLu + maxPool + Convolution + reLu + maxPool

[u20059@c002-n011 demo-tdc]\$ conda env list # conda environments:

base	/glob/intel-python/versions/2018u2/intelpython3
ng	/home/u20059/.conda/envs/ng
ng-compiled	/home/u20059/.conda/envs/ng-compiled
ngraph-compiled	/home/u20059/.conda/envs/ngraph-compiled
tf-conda	/home/u20059/.conda/envs/tf-conda
tf-pip	/home/u20059/.conda/envs/tf-pip

[u20059@c002-n011 demo-tdc]\$ conda create -n tf-pip-2 Solving environment: done

Package Plan

environment location: /home/u20059/.conda/envs/tf-pip-2

Proceed ([y]/n)? y

Preparing transaction: done Verifying transaction: done Executing transaction: done

To activate this environment, use

\$ conda activate tf-pip-2

To deactivate an active environment, use

\$ conda deactivate

[u20059@c002-n011 demo-tdc]\$

• Preparando o ambiente via Anaconda

"conda create -n tf-pip-2"

"pip install intel-tensorflow"

S = = u20059@c002-n011:~	🤗 🗇 💷 u20059@c002-n011:~/demo-tdc
1 [<pre>irst label vector [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>
PID USER PRI NI VIRT RES SHR S CPU% HEMS TIME+ Command 92192 u20059 20 0 21.4G 2114M 64740 S 6342 0.5 40:55.24 python MNIST-test.py 92309 u20059 20 0 21.4G 2114M 64740 R 0.5 019.60 python MNIST-test.py 92407 u20059 20 0 21.4G 2114M 64740 R 0.5 019.60 python MNIST-test.py 92416 u20059 20 0 21.4G 2114M 64740 R 0.5 019.60 python MNIST-test.py 92416 u20059 20 0 21.4G 2114M 64740 R 0.5 018.18 python MNIST-test.py 92450 u20059 20 0 21.4G 2114M 64740 R 0.5 017.53 python MNIST-test.py	2019-03-25 07:27:37.517118: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x55faadf7e e50 executing computations on platform Host. Devices: 2019-03-25 07:27:37.51712: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefineds, <undefineds<br="">2019-03-25 07:27:37.517312: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefineds, <undefineds<br="">2019-03-25 07:27:37.517312: I tensorflow/core/common_runtime/process_util.cc:71] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance. Done [2.2539320e-04 4.7622118e-05 1.6686784e-03 5.6782774e-05 6.0343242e-01 4.3496806e-02 2.1931706e-05 1.4128575e-04 1.5490303e-05 3.5089362e-01] First prediction 4 (60, 10) All predictions [4 4 2 7 7 7 7 7 7 7 7 7 7 8 8 9 0 7 7 0 7 4 0 5 0 9 9 7 0 7 4 7 7 7 0 7 7 9 7 9 9 0 7 7 7 2 7 0 7 2 9 9 9 9 9 0 7 9 4 8 7] Batch labels [7 3 4 6 1 8 1 0 9 8 0 3 1 2 7 0 2 9 6 0 1 6 7 1 9 7 6 5 5 8 8 3 4 4 8 7 3 6 4 6 6 3 8 8 9 9 4 4 0 7 8 1 0 0 1 8 5 7 1 7] 0.06666666666666666666 Done Step 0 of 916 Mini-batch loss: 7.71263 Error: 91.66667 Learning rate: 0.01000</undefineds,></undefineds,>
"python MNIST-test.py"	Satuation error: 36.5% Step 100 of 916 Mini-batch loss: 3.30140 Error: 5.00000 Learning rate: 0.01000 Validation error: 3.7% Step 200 of 916 Mini-batch loss: 3.15330 Error: 6.66667 Learning rate: 0.01000 Validation error: 3.4% Step 400 of 916 Mini-batch loss: 3.11398 Error: 5.00000 Learning rate: 0.01000 Validation error: 2.7%

inte

2019-03-25 11:06:39.92/199: I tensorrlow/core/common runtime/process_util.cc:/1] creating new thread pool with derault inter op setting: 2. Hune using inter_op parallelism_threads for best performance. OMP: Info #250: KMP_AFFINITY: pid 380671 tid 380696 thread 8 bound to OS proc set 0 OMP: Info #250: KMP_AFFINITY: pid 380671 tid 380695 thread 9 bound to OS proc set 1 OMP: Info #250: KMP AFFINITY: pid 380671 tid 380710 thread 10 bound to OS proc set 2 OMP: Info #250: KMP AFFINITY: pid 380671 tid 380711 thread 11 bound to OS proc set 3 <u>OMP: Info #250: KMP AFFINITY: pid 380671 tid 380712 thread 12 bound to OS proc set 4</u> OMP: Info #250: KMP AFFINITY: pid 380671 tid 380714 thread 14 bound to OS proc set 6 OMP: Info #250: KMP_AFFINITY: pid 380671 tid 380713 thread 13 bound to OS proc set 5 OMP: Info #250: KMP AFFINITY: pid 380671 tid 380715 thread 15 bound to OS proc set 7 OMP: Info #250: KMP AFFINITY: pid 380671 tid 380716 thread 16 bound to OS proc set 0 Done [2.2539320e-04 4.7622118e-05 1.6686784e-03 5.6782774e-05 6.0343242e-01 4.3496806e-02 2.1931706e-05 1.4128575e-04 1.5490303e-05 3.5089362e-01] First prediction 4 (60.10)All predictions [4 4 2 7 7 7 7 7 7 7 7 7 0 8 9 0 7 7 0 7 4 0 5 0 9 9 7 0 7 4 7 7 7 0 7 7 9 7 9 9 0 7 7 7 2 7 0 7 2 9 9 9 9 9 0 7 9 4 8 7] Batch labels [7346181098031270296016719765588344873 64663889944078100185717] 0.0666666666666666666 Done Step 0 of 916 Mini-batch loss: 7.71263 Error: 91.66667 Learning rate: 0.01000 Validation error: 88.9% Step 100 of 916 Mini-batch loss: 3.31044 Error: 8.33333 Learning rate: 0.01000 Validation error: 5.8% Step 200 of 916 Mini-batch loss: 3.30167 Error: 8.33333 Learning rate: 0.01000 Validation error: 3.8% Step 300 of 916 Mini-batch loss: 3.12416 Error: 3.33333 Learning rate: 0.01000 Validation error: 3.3% Step 400 of 916 Mini-batch loss: 3.09580 Error: 5.00000 Learning rate: 0.01000 Validation error: 2.7% Step 500 of 916 Mini-batch loss: 3.02841 Error: 1.66667 Learning rate: 0.01000 Validation error: 2.4% Step 600 of 916 Mini-batch loss: 3.05534 Error: 5.00000 Learning rate: 0.01000 Validation error: 2.0% Step 700 of 916 Mini-batch loss: 3.15112 Error: 8.33333 Learning rate: 0.01000 Validation error: 2.2% Step 800 of 916 Mini-batch loss: 3.05624 Error: 5.00000 Learning rate: 0.01000 Validation error: 1.9% Step 900 of 916 Mini-batch loss: 2.85126 Error: 0.00000 Learning rate: 0.01000 Validation error: 2.0% Walltime: 28.40896463394165 Test error: 2.1% (tf-pip-2) [u20059@c002-n014 demo-tdc]5

"numactl -C 0-7 python MNIST-test.py"

😣 🖻 🗊 u20059@c002-n014:~					
1 [17 [18 [19 [20 [21 [22 [23 [24 [25 [25 [26 [27 2 28 [29 [29 3] 31 [32]	0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%]	33 [34 [35] 36] 37] 38] 40] 40] 41] 42] 43] 44] 43] 44] 43] 43] 43] 44] 43] 44] 43] 44] 43] 44] 43] 44] 45] 46] 47] 48] 49] 49] 40] 41] 42] 43] 44] 43] 44] 44] 45] 46] 47] 48] 48] 48] 48] 49] 49] 49] 40] 41] 42] 43] 44] 43] 44] 44] 45] 46] 47] 48] 48] 48] 48] 48] 49] 49] 40] 41] 42] 43] 44] 45] 46] 47] 48] 48] 47] 48] 47] 48] 48] 47] 47] 47] 48] 47] 47] 47] 47] 47] 47] 47] 47] 48] 47]	0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 1.12 0.41	49 [50 [52 [53 [55 55] 56 [57 58] 59 59 60 [63 [63 64]

377098	1120059	20	0	114M	2804	1708	5 0.0	0.0	0:00.05 -bash	
E1 Hole	E2Setup	EBSear	c ch E	4 Eilte	ESTre	E6S		Nice	-E8Nice +E9Kill	E10 Out t

Extracting /tmp/mnist-data/train-labels-idx1-ubyte.gz Extracting /tmp/mnist-data/t10k-labels-idx1-ubyte.gz Training labels shape (60000, 10) First label vector [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] Second label vector [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Validation shape (5000, 28, 28, 1) Train size 55000										
WARNING:tensorflow:From /home/u20059/.local/lib/python3.6/site-packages/					igora	bigor-vm: ~	sta uith (from toncorf		
Instructions for updating:	sila Edi	t View	Search :	Terminal	Holo					
Colocations handled automatically by placer.	File Lon	L VIEW	Search	lerninat	пер					
Done	1	umin	100.0%	17	0.0%]	33	0.0%]	49	0.0%]	
Done WARNING:tensorflow:From MNIST-test.pv:306: calling dropout (from tensorf	2		0.0%	18	0.0%]	34	0.0%]	50 [0.0%]	
Instructions for updating:	3		0.0%	19	0.0%]	35	0.0%]	51	0.0%]	
Please use `rate` instead of `keep_prob`. Rate should be set to `rate =	4		0.0%	20	0.0%	36	0.0%]	52	0.0%]	
Done			0.0%	21	0.7%	37	0.0%	54	0.0%]	and the second second
2019-04-08 12:37:20.546485: I tensorflow/core/platform/cpu_feature_guard	7 Ē		0.0%	23	0.0%]	39	0.0%]	55	0.0%]	VX2
PMA 2019-04-08 12:37:20 571720: I tensorflow/core/platform/profile utils/cou	8 [0.0%	24	0.0%]	40	0.0%]	56	0.0%]	
2019-04-08 12:37:20.571967: I tensorflow/compiler/xla/service/service.cc	9 [0.0%	25	0.0%]	41	0.0%]	57	0.0%]	
2019-04-08 12:37:20.571996: I tensorflow/compiler/xla/service/service.cc	10		0.0%	20	0.7%	42	0.0%	58	0.0%	
2019-04-08 12:37:20.572149: I tensorflow/core/common_runtime/process_uti	12		0.0%	28	0.0%]	44	0.0%	59 L	0.0%]	elis
ds for best performance.	13		0.0%	29	0.0%]	45	0.0%	61	0.0%	
Done [2 25202400-04 4 7621914e-05 1 6686745e-03 5 6782646e-05 6 0343218e-01	14 E		0.0%	30	0.0%]	46	0.0%]	62	0.0%]	
4.3496739e-02 2.1931655e-05 1.4128556e-04 1.5490252e-05 3.5089380e-01]	15		0.0%	31	0.0%]	47 [2.0%	63	0.0%]	
First prediction 4	16		0.0%	32	0.0%]	48	0.0%]	64	0.0%]	
(60, 10)	Mem				2.516/3776	Tasks: 41,	22 thr; 2	running		
All predictions [4 4 2 7 7 7 7 7 7 7 7 7 7 8 9 0 7 7 0 7 4 0 5 0 9 9 7 0	SWPL				OKAT. ATO	Uptime: 8	days. 19:3	2:44		
7 9 9 0 7 7 7 2 7 0 7 2 9 9 9 9 9 0 7 9 4 8 7]						Operation				
Batch labels [/ 3 4 6 1 8 1 0 9 8 0 3 1 2 / 0 2 9 6 0 1 0 / 1 9 / 0 5 5 0										
0.06666666666666666										
Done										
Step 0 of 916										
Mini-batch loss: 7.71263 Error: 91.66667 Learning rate: 0.01000										
Validation error: 88.9%	"n	im	-c+1	C	0 nuthar		T + a	ct ny"		
Mini-batch loss: 3.30302 Error: 8.33333 Learning rate: 0.01000		um	αςιι	-0	υργιτιοι	I IMINIS	51-18	ιςι.ργ		
Validation error: 5.7%								• •		
Step 200 of 916										
Mini-batch loss: 3.33852 Error: 8.33333 Learning rate: 0.01000 Validation error: 3.7%										
Step 300 of 916										
Validation error: 3.3%										

(intel

Tempo para 64 Threads "default": 102 segundos

NUMACTL

numactl –C 0-15,16-31 python MNIST.py

- Mais cores não significa maior performance
- 48 threads teve mesma performance que 64 threads (102s)
- Melhor tempo com 32 threads (83s) – 1.22x speedup

export KMP_BLOCKTIME=0 numactl -C 0-15,16-31 python MNIST.py

- KMP_BLOCKTIME: tempo em milisegundos de espera da thread, após executar sua tarefa, antes de dormir
- 2.68x speedup
- Melhor tempo com 16 threads
- Melhor Performance x benefício com 2 Threads

) | 32

∕inte

export KMP_BLOCKTIME=0 export KMP_AFFINITY=granularity=fine,verbose,compact,1,0 numactl -C 0-15 python MNIST.py

- <u>16 threads : 4.86x speedup !</u>
 - Menor custo de infra-estrutura
 - Mais jobs de treinamento ao mesmo tempo
 - Modelos maiores
- Sem alteração de código

Programação Paralela aplicado em IA KMP_AFFINITY=granularity=fine,verbose,compact,1,0

- Como as Threads são distribuídas entre os Cores e Sockets
- Impacta bandwidth: "velocidade de memória"

Obrigado !

Dúvidas

BACKUP

What's New in Intel[®] Distribution of OpenVINO[™] toolkit

- Extends neural network support to include LSTM (long short-term memory) from ONNX*, TensorFlow*& MXNet* frameworks, & 3D convolutional-based networks in preview mode (CPU-only) for non-vision use cases.
- Introduces Neural Network Builder API (preview), providing flexibility to create a graph from simple API calls and directly deploy via the Inference Engine.
- Improves Performance Delivers significant CPU performance boost on multicore systems through new parallelization techniques via streams. Optimizes performance on Intel[®] Xeon[®], Core[™] & Atom processors through INT8-based primitives for Intel[®] Advanced Vector Extensions (Intel[®] AVX-512), Intel[®] AVX2 & SSE4.2.
- Supports Raspberry Pi* hardware as a host for the Intel[®] Neural Compute Stick 2 (preview). Offload your deep learning workloads to this low-cost, low-power USB.
- Adds 3 new optimized pretrained models (for a total of 30+): Text detection of indoor/outdoor scenes, and 2 single-image super resolution networks that enhance image resolution by a factor of 3 or 4.

NOTICES AND DISCLAIMERS

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined with a number of situation-specific variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to the use and deployment of a given product. Nothing in this document should be interpreted as either a promise of or contract for a given level of costs or cost reduction.

Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit intel.com/performance.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit intel.com/benchmarks.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

© 2018 Intel Corporation. Intel, the Intel logo, Intel Optane and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Benchmark Segment	AI/ML/DL	OS	CentOS Linux reléase 7.3.1611 (Core), Linux kernel 4.7.2.el7.x86_64		
Benchmark type	Training	нт	On		
Benchmark Metric	Training Throughout (images (sec)	Turbo	On		
		Computer Type	Dual-socket server		
Framework	BigDL master trunk with Spark 2.1.1				
Topology	Inception V1, VGG, ResNet-50, ResNet-152	Framework Version	https://github.com/intel-analytics/BigDL		
# of Nodes	8, 16 (multiple configurations)				
Platform	Purley	Topology Version	https://github.com/google/inception		
Sockets	2S	Dataset, version	ImageNet, 2012; Cifar-10		
Processor	Intel ® Xeon ® Scalable Platinum 8180 Processor (Skylake): 28-core @ 2.5 GHz (base), 3.8 GHz (max turbo), 205W Intel ® Xeon ® Processor E5-2699v4 (Broadwell): 22-core @ 2.2 GHz (base) 3.6 GHz (max turbo), 145W		spark-submitclass com.intel.analytics.bigdl.models.inception.TrainInceptionV1 master spark://\$master_hostname:7077executor-cores=3 num-executors=16total-executor-cores=576driver- memory=60gexecutor-		
Enabled Cores	Skylake: 56 per node, Broadwell: 44 per node	(Inception v1)	memory=300g \$BIGDL_HOME/dist/lib/bigdl-*-SNAPSHOT-		
Total Memory	Skylake: 384 GB, Broadwell: 256 GB		jar-with-dependencies.jarbatchSize 2304learningRate		
Memory Configuration	Skylake: 12 slots * 32 GB @ 2666 MHz Micron DDR4 RDIMMs Broadwell: 8 slots * 32 GB @ 2400 MHz Kingston DDR4 RDIMMs		0.0896 -f hdfs:///user/root/sequence/ checkpoint <mark>\$check_point_folder</mark>		
Storage	Skylake: Intel® SSD DC P3520 Series (2TB, 2.5in PCIe 3.0 x4, 3D1, MLC) Broadwell: 8 * 3 TB Seagate HDDs	Data setup	Data was stored on HDFS and cached in memory before training		
Net out		Java	JDK 1.8.0 update 144		
Network	I ~ IU GDE NETWORK PER NODE	MKL Library version	Intel MKL 2017		

- •

- •
- •
- .
- .
- .

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

SPARK SQL CONFIGURATIONS

		AEP DRAM							
Hardware	DRAM	192GB (12x 16GB DDR4)	768GB (24x 32GB DDR4)						
	Apache Pass	1TB (ES2: 8 x 128GB) N/A							
	AEP Mode	App Direct (Memkind) N/A							
	SSD	N/A N/A							
	CPU	Worker: Intel® Xeon® Platinum 8170 @ 2.10GHz (Thread(s) per core: 2, Core(s) per socket: 26, Socket(s): CPU max MHz: 3700.0000 CPU min MHz: 1000.0000 L1d cache: 32K, L1i cache: 32K, L2 cache: 1024K, L3 cache: 36608K)							
날랐다	OS	4.16.6-202.fc27.x86_64 (BKC: WW26, BIOS: SE5C620.86B.01.00.0918.062020181644)							
Software	ΟΑΡ	1TB AEP based OAP cache 620GB DRAM based OAP cac							
off Of	Hadoop	8 * HDD disk (ST1000NX0313, 1-replica uncompressed & plain encoded data on Hadoop)							
	Spark	1 * Driver (5GB) + 2 * Executor (62 cores, 74GB), spark.sql.oap.rowgroup.size=1MB							
	JDK	Oracle JDK 1.8.0_161							
Workloa	Data Scale	2.6TB (9 queries related data is of 729.4GB in capacity)							
d	TPC-DS 9 I/O intensive queries (Q19,Q42,Q43,Q52,Q55, Q63,Q68,Q73,Q98) Queries 9 I/O intensive queries (Q19,Q42,Q43,Q52,Q55, Q63,Q68,Q73,Q98)								
	Multi-Tenants	9 threads (Fair sc	heduled)						

Other names and brands may be claimed as the property of others.

(intel

APACHE CASSANDRA CONFIGURATIONS

			NVMe	Apache Pass						
Server Ha	ardware	System Details	Intel® Server Board Purely Platform (2 socket)							
		CPU	Dual Intel® Xeon® Platinum 8180 Processors,	, 28 core/socket, 2 sockets, 2 threads per core						
		Hyper-Threading	Ena	bled						
		DRAM	DDR4 dual rank 192GB total = 12 DIMMs 16GB@2667Mhz	DDR4 dual rank 384GB total = 12 DIMMs 32GB@2667Mh						
		Apache Pass	N/A	AEP ES.2 1.5TB total = 12 DIMMs * 128GB Capacity each: Single Rank, 128GB, 15W						
		Apache Pass Mode	N/A	App-Direct						
		NVMe	4 x Intel P3500 1.6TB NVMe devices	N/A						
		Network	10Gbit on board Intel NIC							
Soft	ftware	OS	Fedora 27							
		Kernel	Kernel: 4.16.6-2	202.fc27.x86_64						
				Cassandra 4.0 trunk, with App Direct patch version 2.1, software found at						
		Cassandra Version	3.11.2 release	https://github.com/shyla226/cassandra/tree/13981						
				with PCJ library: https://github.com/pmem/pci						
	JDK		Oracle Hotspot J	DK (JDK1.8 u131)						
		Spectra/Meltdown Compliant	Patched for variants 1/2/3							
Cas	ssandra	Number of Cassandra								
Para	rameters	Instances								
		Cluster Nodes	One per	r Cluster						
		Garbage Collector	CMS	Parallel						
				-Xms20G						
				-Xmx20G						
	default)	JVM Options (difference from	-Xms64G	-Xmn8G						
		default)	-Xmx64G	-XX:+UseAdaptiveSizePolicy						
				-XX:ParallelGCThreads=5						
		Schema	cglstress-insanii	ty-example.yaml						
		DataBase Size per Instance	1.25 Billion entries	100 K entries						
Client(s) Har	rdware	Number of Client machines		2						
		System	Intel® Server Board mod	del S2600WFT (2 socket)						
		CPU	Dual Intel® Xeon® Platinum 8176M CPU @ 2.1Ghz, 28 core/socket, 2 sockets, 2 threads per core							
		DRAM	DDR4 384GB total = 12 DIMMs 32GB@2666Mhz							
		Network	10Gbit on board Intel NIC							
Soft	ftware	OS	Fedora 27							
		Kernel	Kernel: 4.16.6-2	202.fc27.x86_64						
		JDK	Oracle Hotspot JDK (JDK1.8 u131)							
Wor	orkload	Benchmark								
		Cassandra-Stress Instances		14						
		C	cassandra-stress user profile/root/cassandra 4.0/tools/cglstress-insanity-example.yaml	cassandra-stress user profile/root/cassandra 4.0/tools/cglstress-insanity-example.yaml						
		Command line to write	ops\(insert=1\) n=1250000000 cl=ONE no-warmup -pop seg=11250000000 -mode native	ops\(insert=1\) n=100000 cl=ONE no-warmup -pop seg=1100000 -mode native cgl3 -node						
		database	cgl3 -node <ip addr=""> -rate threads=10</ip>	<ip addr=""> -rate threads=10</ip>						
		C	cassandra-stress user profile=/root/cassandra 4.0/tools/cglstress-insanity-example.yaml	cassandra-stress user profile=/root/cassandra 4.0/tools/cglstress-insanity-example.yaml						
		Command line to read		ons/(cimple1=1)) duration=2m cl=ONE no warmun non dist=UNIFORM/(1 10000)) mode						
		detelesse	ps(simplet = t) duration = on ct=one no-warmup -pop dist=ontrokm(1125000000) ops((simplet = t) duration=an ct=one no-warmup -pop dist=ontrokm(1100000) -mode							

inte

