Applied Computing Graduate Program Master Proposal Qualifying Examination

FogChain: A Fog computing architecture integrating Blockchain and Internet of Things for Personal Health Records

MSc student: André Henrique Mayer

Advisor: Prof. Cristiano André da Costa, Ph.D.

Aug, 2019

UNISINOS

- Introduction
- Background
- Related Work
- FogChain Architecture Model
- > Methodology
- ➢ Conclusion
- Publications
- ➢ Schedule

Introduction - Research Problem

- -Possibly scattered and fragmented among multiple organizations (hospitals and clinics);
- Records are **not**: up-to-date, shared;
- Patients repeating exams due to lack ∩† interoperability;

Patient's health records:

Introduction - Research Problem

 How to improve patients outcomes regarding health data?
How to secure and facilitate patients access and management to their own personal health records (PHR)?

To propose and design an architectural model capable of improving patient's experience and outcomes based on collected health data (IoHT) to be safely stored in a <u>Blockchain</u> with <u>fog computing</u> support.

Introduction - Motivation

- Recent researches predict that centralized clouds, which are frequently used in current IoT systems, will be unlikely to deliver satisfactory services to customers in the near future (SHARMA; CHEN; PARK, 2018).
- The process of collecting vital signs in hospital wards varies, and different approaches are used worldwide. In some cases, data is only manually collected, and stored in spreadsheets that are discarded after the patient is discharged (COSTA et al., 2018).

UNISINOS

Introduction - Motivation

- A more **patient-centric** healthcare solution:
 - Rethink current standards and propose solutions for the **benefit of patients**.
- Seek alternatives and **innovative** solutions for healthcare domain.

Introduction - Research Question

How could be described a model for the integration of <u>Blockchain</u> and <u>Internet of Things</u> technologies for Personal Health Records (PHR) using <u>Fog Computing</u>?

JESUÍTAS BRASIL

Introduction - Scientific contribution

✓ **Taxonomy** classification into the state of the art;

- <u>Model</u> supporting PHR management with fog computing design integrating IoHT and Blockchain;
- Prototype implementation of a Blockchain with smart contracts support;
- ✓ Benchmark evaluation and analysis;
- ✓ <u>Steps for automation</u> of vital signs collecting process.

* Increvenents :

1. Background

2. Related Work

START

Reality of the second second

UNISINOS

4. Implementing

3. Modeling

Somos infinitas possibilidades

END

5. Simulations

and Results

Background – EHR vs PHR

Health providers control

Patient control

UNISINOS

Background – Medical Recordkeeping

UNISINOS

Background – Distributed Health Records

Background – Blockchain

- Peer-to-Peer (P2P);
- **Distributed Ledger** Techonology (DLT);

distributed (C)

<u>Decentralised</u>: level of **control** over data; <u>Distributed</u>: data location (**localization**).

• Healthcare aderency: security (cryptography); immutability; pseudonymity (public-private keys).

JNISINOS

• Tamper-proof (51% attack): Consensus protocols;

Background – Internet of Health Things (IoHT)

BB

Background – IoHT

- Points of contact with the physical world; (CHRISTIDIS; DEVETSIKIOTIS, 2016).
- Interconnected devices exchanging and processing health data; (COSTA et al., 2018).
- Sensors collecting vital signs;
- Constrained: computing power, storage, and energy availability; (NOVO, 2018)

Background – Fog computing

- Local extension of the Cloud near the edge:
 - Services available locally;
 - Latency mitigation;
 - Things and Health Things are too constrained to run itself a complex consensus algorithms such as Proof-of-Work (PoW) and others, so Fog computing does the work!

School of Athens: (Rafael Sanzio - 1510)

RELATED WORK

Related work

Systematic Literature Review (SLR)
– General research questions:

- 1. What is the taxonomy for PHRs in a Blockchain?
- 2. What are the challenges and open questions related to health records in a Blockchain?

UNISINOS Somos infinitas possibilidades

FUNDAÇÃO

19

Related Work – Corpus

Reference	Authors	Year	Publishe	r	Туре						
A01	(LINN; KOO, 2016)	2016	HealthI	t	Journal						
A02	(EKBLAW et al., 2016)	2016	IEEE		Conference						
A03	(YUE et al., 2016)	2016	Springe	r	Journal						
A05	(NICHOL; BRANDT, 2016)	2016	Researchgate		Journal						
A16	(HASHEMI et al., 2016)	2016	IEEE		Conference	🕨 🗡 Kece	ent lite	erature (~5	vears)		
A04	(ROEHRS; COSTA; ROSA RIGHI, 2017)	2017	Elsevie	Journal							
A07	(YANG; YANG, 2017)	2017	NISK		Conference	Conference					
A10	(SMITH; DHILLON, 2017)	2017	AMCIS		Conference						
A11	(RABAH, 2017)	2017	MRJOURN	ALS	Journal						
A12	(CHENG et al., 2018)	2017		(NIRANJA NA MURTHY; NITHYA IAGA NNATHA 2018)		THY: NITHYA:					
A13	(LIU et al., 2017)	2017	A18			HA 2018)	2018	Springer	Journal		
A15	(ICHIKAWA; KASHIYAMA; UENO, 2017)	2017		JAGANNATHA, 2018		IA, 2018)	2010				
A19	(KSHETRI, 2017)	2017	A20	(GUO et al., 2018)		2018	IEEE	Journal			
A21	(SHAE; TSAI, 2017)	2017	A22	(FAN et al., 2017)		2018	IET Comm	Journal			
A23	(KARAFILOSKI; MISHEV, 2017)	2017	A28	(MANNARO et al. 2018)		2018	IREE	Conference			
A24	(XIA et al., 2017)	2017	A 20	(MANG: SONG 2018)		2018	Enringer	Lournal			
A25	(THOMASON, 2017)	2017	Abu	(WANG; SUNG, 2018)		2010	Springer	Journai			
A26	(DUBOVIISKAYA et al., 2017)	2017	A31	(KLEINAKI et al., 2018)		2018	Elsevier	Journal			
A2/	(LEMIEUX, 2017)	2017	A32	(BANERJEE; LEE; CHOO, 2018)		2018	Elsevier and KeAi	Journal			
A29	(PRIISALU; OTTIS, 2017)	2017	Δ33		(GORDON: CAT	ALINE 2018)	2018	Flsevier	Iournal		
A06	(CYRAN 2018)	2017	A 34	(GROVER: KAR: DAVIES 2018)		2018	Elemier	Iournal			
408	(PATEL 2018)	2018	A54	(UKOVEK, KAK, DAVIES, 2018)		2016	Elsevier	Journai			
A09	(DAGHER et al., 2018)	2018	A36	(JIANG et al., 2018)		2018	IEEE	Conference			
A14	(RIBITZKY et al. 2018)	2018	A37	(MAMOSHINA et al., 2018)		2018	Impact Journals	Journal			
A17	(ZHANG et al., 2018)	2018		(ROMAN-BELMONTE:							
			A 38	CORTE RODRIGUEZ		2018	MEDKNOW Publications	Journal			
			ADO	CONTE-NUDRIGUEZ;							
				KODKIGUEZ-MEKCHAN, 2018)							
			A39	(BADR; GOMAA; ABD-ELRAHMAN, 2018)			2018	Elsevier	Journal		
			A40	(KELLER; KESSLER, 2		SLER, 2018) 2018		IEEE	Conference		
			A41		(RAHMAN et al., 2019) 2019			IEEE	Journal		
			A42	(SILVA et al., 2019)			2019	Hindawi	Journal		
			A43	(TULI et al., 2019) 2019 Elsevier			Elsevier	Journal			
			A44	(SHEN; GUO; YANG, 2019)			2019	MDPI	Journal		

FUNDAÇÃO 21

Research Opportunities

- Patient-centric model;
- <u>Health records distribution</u> enabling some level of interoperability among organizations and patients;
- Immutable and tamper-proof solution for PHR management;
- <u>Aim for real-time solutions</u> through fog computing architecture.

FOGCHAIN ARCHITECTURAL MODEL

FogChain – Hospitals edge scenarios

Scenario 1 (Fogchain per room)

Scenario 2 (per ward)

FogChain – Macro view

Figure 5: FogChain architecture macro visualization.

UNISINOS

FogChain – Internal components

1. <u>Protocols Interoperability</u>:

– MQTT, COAP, HTTP conversions.

2. Data Filtering and Validation:

- Data validation (prevent invalid data);
- Filter to control what should be replicated;
- Accumulate data for Batch.

3. Transaction API:

- API to submit transactions to the **Blockchain**.

4. Blockchain Peer:

- Local Blockchain network Peer;

UNISINOS

FogChain – IoT++ (Nightbus)

IoT Protocols interoperability and conversions;

	lessage si	ze: 26 bytes					
1 + 2 3	{	"testl", 42					
4	s		Throughput benchma				
MQT	Г - MQTT	CoAP - HTTP	HTTP - CoAP	MQTT - CoAP	MQTT - HTTP		
53.5	1 msg/s	6.4 msg/s	35.08 msg/s	0.14 msg/s	49.89 msg/s		
Source: (SUAD et al., 2018)							

UNISINOS

Somos infinitas possibilidades

https://github.com/fuadsaud/nightbus/blob/master/resources/fixtures/message.json

FogChain - Network Participants

Doctor -doctorId: String name: String CRM: String specialties: String address: Address patients: ArrayList (Patient)

Patient

-cartaoSUS: string

name:string

dob: string

address:Address

UNISINOS

FogChain – Blockchain Consensus

Consensus in Hyperledger Fabric chances into three phases: Endorsement, Ordering, and Validation:

FogChain – Smart Contracts

METHODOLOGY: SIMULATION AND BENCHMARK

Methodology – Simulation and Benchmark

≻ <u>Input</u>:

- University of Queensland's Vital signs dataset; (LIU; GORGES; JENKINS, 2012).

- Multiple persistence configutations:
 - Light, medium and heavy simulation scenarios;
- Computational resources <u>monitoring</u>: – CPU;
 - **RAM**;

Methodology – Simulation Hardware

- Ubuntu 16.04 (64-bit);
- Processor Intel Xeon E5-2620v4 2.1GHz 8c/16t;
- 32Gb RAM;
- HDD SAS 600Gb RAID 5 (10.000 RPM);

JESUÍTAS BRASIL

Methodology - Metrics

≻Throughput:

 The rate at which our implementation handles collected data and process transactions.

≻<u>Latency:</u>

Time difference between the one-way-delay of selected packets within a stream of packets going from measurement point one (MP1) to measurement point two (MP2) end-to-end.

Benchmark - Simulation Sample PHR

=		Transaction block size: ~61Kb
1 -	{	
2		"\$class": "br.unisinos.uhospital.phr.MedicalRecord",
3		"recordId": "1",
4		"format": "ECG",
5		"description": "0.9",
6		<pre>"offchainDataLink": "https://gateway.ipfs.io/ipfs</pre>
		/b89eaac7e61417341b710b727768294d0e6a277b",
7		"medicalHistory": "Hypertension",
8		"allergies": "None",
9		"currentMedication": "Atenolol",
0		"smoking": false,
1		<pre>"owner": "resource:br.unisinos.uhospital.ehr.Patient#123456789"</pre>
2	}	

Preliminary Results

Axis X: Persistence setup with batch size variation

Preliminary Results

Figure 8: CPU metrics during workload.

Preliminary Results

Conclusions

- Fog computing may play a big role in healthcare applications by improving local processing and storage capabilities near the edge of hospital rooms;
- Blockchain technology is not limited to the financial sector and may apply to other domains such as healthcare;
- Open standards adoption by healthcare industry to increase levels of interoperability between multiple systems and organizations;
- More trials must be carried out before placing our model in a real scenario.

UNISINOS

Conclusions

- Expected contributions:
 - >Patient-centric model;
 - Verification of the FogChain feasibility;
 - Publications and taxonomy;
 - Benchmarks;
 - Improve vital signs collecting process (IoHT);
 - >Fog computing supporting low-latency models.

Research Limitations

- Very recent literature available;
- Focus only in PHR;
- Interoperability was not on initial scope and was discovered as <u>challenge</u> during SLR.
- Focus on <u>server-side</u> research and development for PHR management, and not on the client-side (data visualization, etc.);

Publications

- Accept (07-Jul-2019):
 - MAYER, A.; COSTA, C. A. da; RIGHI, R. Electronic Health Records in a Blockchain: a systematic review. Health Informatics Journal (HIJ).

ISSN: 1460-4582 Online ISSN: 1741-2811

Schedule of activities

Stage	Jul/19	Aug/19	Sep/19	Oct/19	Nov/19	Dec/19	Jan/20	Feb/20
Setup and configure Blockchain	~							
in a fog computing environment								
Prototype modeling and implementation	\checkmark	\checkmark	\checkmark					
Performance tests and evaluation		\checkmark	\checkmark					
Compile and analyze test results		\checkmark	\checkmark					
Second article submission		\checkmark	\checkmark	\checkmark				
Write Dissertation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Dissertation review						\checkmark	\checkmark	
Dissertation delivery							\checkmark	
Third article submission						\checkmark	\checkmark	\checkmark
Master's Defense								$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$

UNISINOS

Somos infinitas possibilidades

Source: Elaborated by the author.

References

- COSTA, C. A. da et al. Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artificial Intelligence In Medicine, [S.I.], 2018.
- SHARMA, P. K.; CHEN, M.-Y.; PARK, J. H. A software defined fog node based distributed blockchain cloud architecture for iot. IEEE Access, [S.I.], v. 6, p. 115–124, 2018.
- LIU, D.; GORGES, M.; JENKINS, S. A. University of queensland vital signs dataset. Anesthesia & Analgesia, [S.I.], v. 114, n. 3, p. 584–589, mar 2012.
- CHRISTIDIS, K.; DEVETSIKIOTIS, M. Blockchains and smart contracts for the internet of things. leee Access, [S.I.], v. 4, p. 2292–2303, 2016.
- NOVO, O. Blockchain meets iot: an architecture for scalable access management in iot. IEEE Internet of Things Journal, [S.I.], v. 5, n. 2, p. 1184–1195, 2018.
- SUAD, F. et al. Exploring extensibility and interoperability in the internet of things landscape. In: INTERNATIONAL CONFERENCE ON WWW/INTERNET 2018, 17., 2018, 2018, Budapeste. PROCEEDINGS OF THE INTERNATIONAL CONFERENCES ON WWW/INTERNET 2018 AND APPLIED COMPUTING 2018. Lisboa. Anais. . . IADIS, 2018. p. 339–343.

Thank You!

