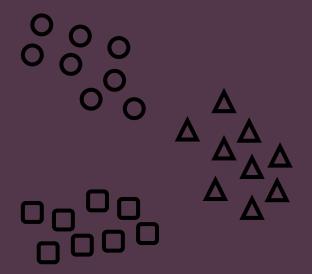
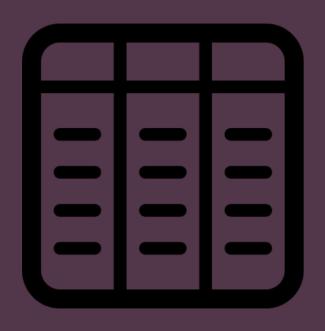


Giovana de Lucca

Engenheira de Software PyLadies Manaus

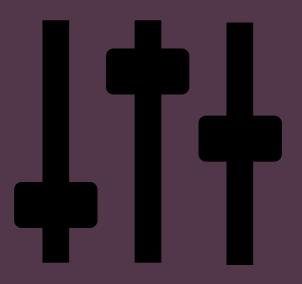
Como funciona o processo de aprendizado de máquina?





Coletar e organizar os dados

- Coletar e organizar os dados
- Analisar e pré-processar os dados



- Coletar e organizar os dados
- Analisar e pré-processar os dados
- Selecionar um modelo

- Coletar e organizar os dados
- Analisar e pré-processar os dados
- Selecionar um modelo
- Selecionar parâmetros do modelo

- Coletar e organizar os dados
- Analisar e pré-processar os dados
- Selecionar um modelo
- Selecionar parâmetros do modelo
- Treinar o modelo

- Coletar e organizar os dados
- Analisar e pré-processar os dados
- Selecionar um modelo
- Selecionar parâmetros do modelo
- Treinar o modelo
- Testar o modelo

Qual o melhor modelo para o seu problema de aprendizado de máquina?

Qual o comportamento dos meus dados?

Qual o comportamento dos meus dados?

Do que se trata meu problema?

Qual o comportamento dos meus dados?

Do que se trata meu problema?

Existem outros problemas similares já resolvidos?

Qual o comportamento dos meus dados?

Do que se trata meu problema?

Existem outros problemas similares já resolvidos?

Eu possuo uma massa grande de dados?

Qual o comportamento dos meus dados?

Do que se trata meu problema?

Existem outros problemas similares já resolvidos?

Eu possuo uma massa grande de dados?

Como os meus dados estão disponíveis?

Qual o comportamento dos meus dados?

Do que se trata meu problema?

Existem outros problemas similares já resolvidos?

Eu possuo uma massa grande de dados?

Como os meus dados estão disponíveis?

Quais recursos de memória e processamento eu possuo?

Qual o comportamento dos meus dados?

Do que se trata meu problema?

Existem outros problemas similares já resolvidos?

Eu possuo uma massa grande de dados?

Como os meus dados estão disponíveis?

Quais recursos de memória e processamento eu possuo?

entre outras...

Considerando um problema prático para entender como responder o questionamento

LIBRA

S

LIngua

BRA sileira

Sinais

LIngua

BRA sileira

Sinais

COMPOSIÇÃO DO SINAL

LIngua **BRA** sileira Sinais

COMPOSIÇÃO DO SINAL

Configurações das mãos

LIngua **BRA** sileira Sinais

COMPOSIÇÃO DO SINAL

- Configurações das mãos
- Ponto de articulação

Sinais

- Configurações das mãos
- Ponto de articulação
- Movimento

Sinais

- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação

Sinais

- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação
- Expressões faciais

Sinais

- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação
- Expressões faciais

Sinais >

COMPOSIÇÃO DO SINAL

- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação
- Expressões faciais

- Corporais

Sinais >

COMPOSIÇÃO DO SINAL

- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação
- Expressões faciais

CorporaisGramaticais

Sinais >

COMPOSIÇÃO DO SINAL

- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação
- Expressões faciais

Corporais

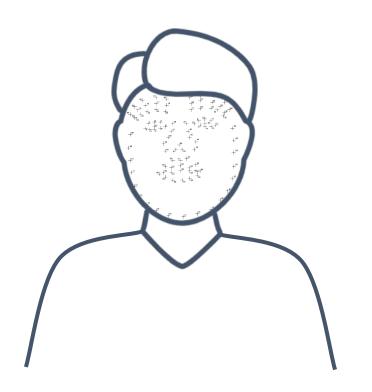
Gramaticais

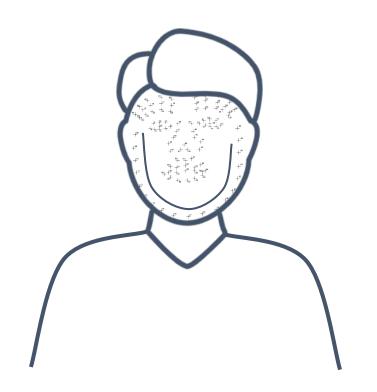
Sinais >

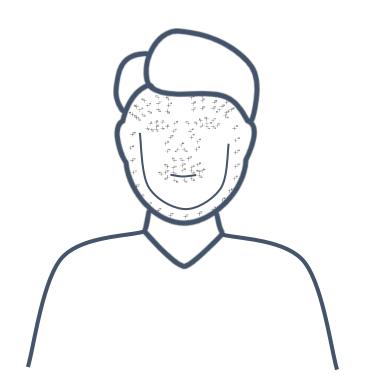
COMPOSIÇÃO DO SINAL

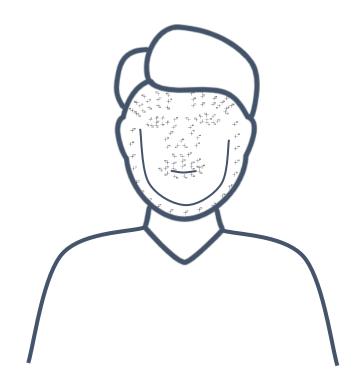
- Configurações das mãos
- Ponto de articulação
- Movimento
- Orientação
- Expressões faciais

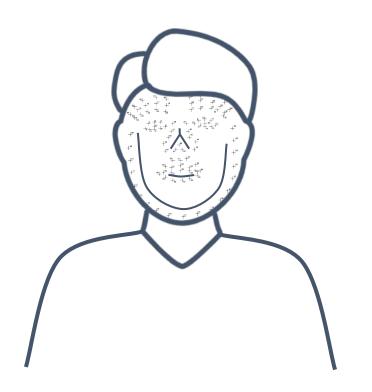
Corporais

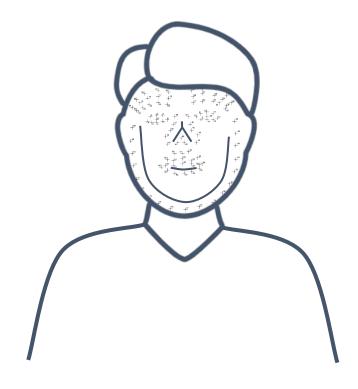

Gramaticais: 9

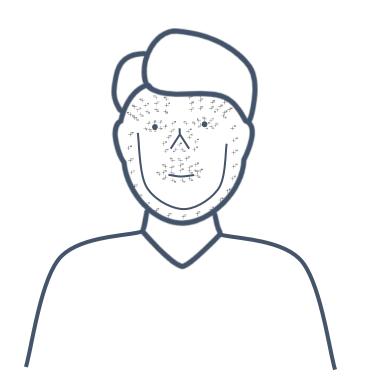


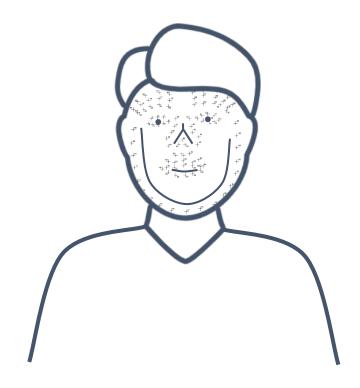


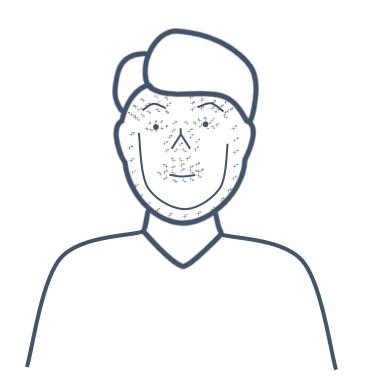


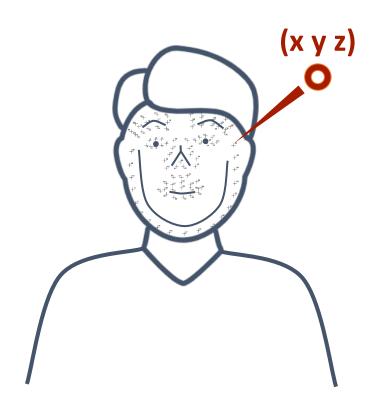


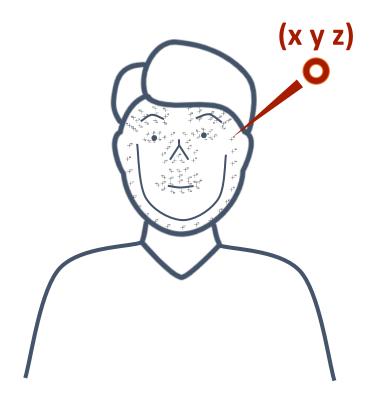


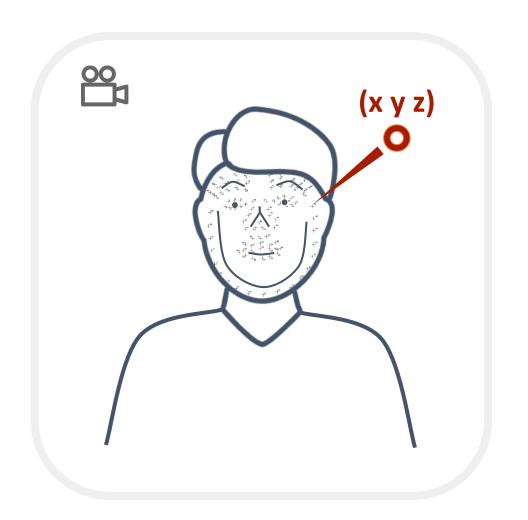


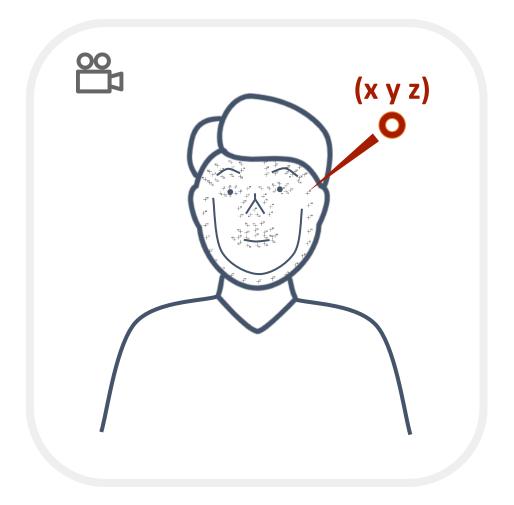


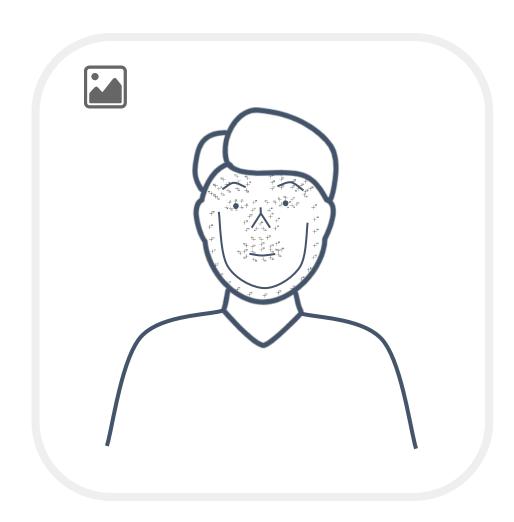




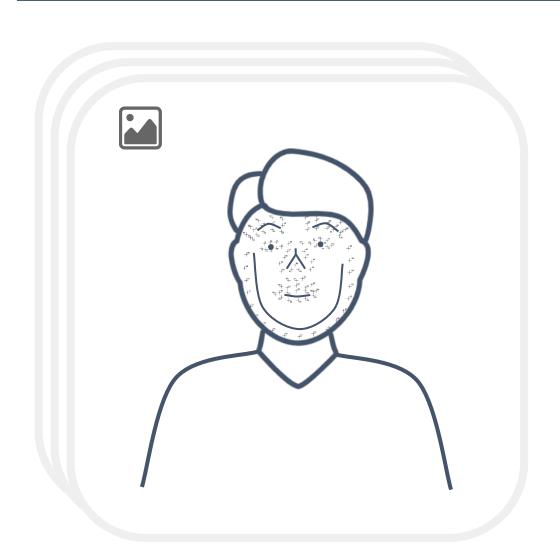


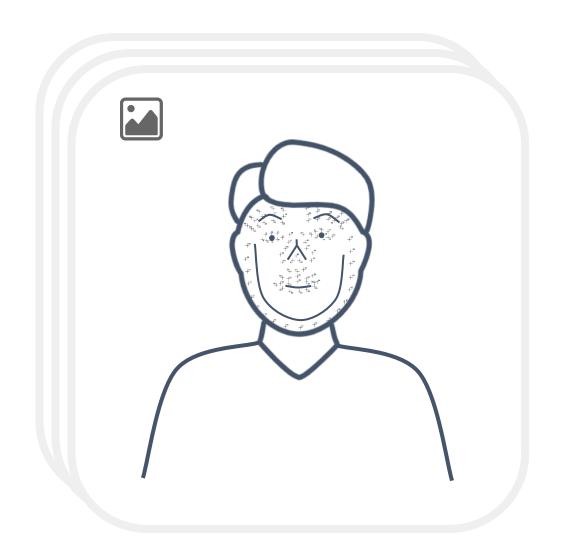


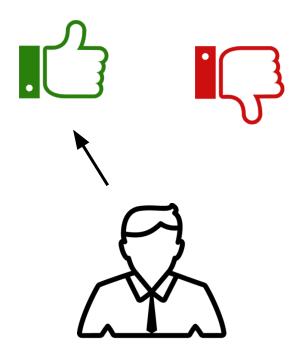




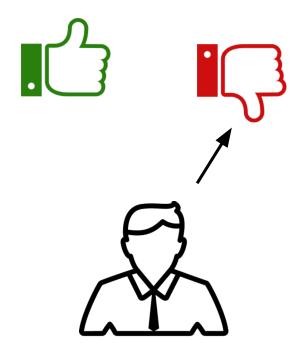


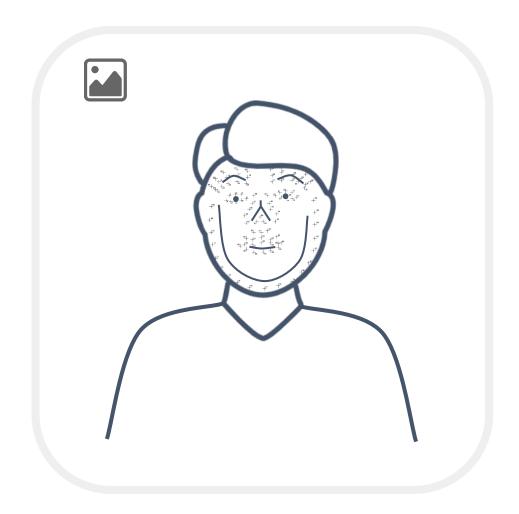


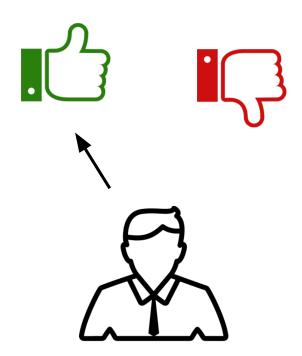












ATRIBUTOS PREDITORES

CLASSES

100 sensores Possul **3 coordenadas**

ATRIBUTOS PREDITORES

CLASSES

100 sensores POSSUI 3 coordenadas

ATRIBUTOS PREDITORES

CLASSES

100 sensores Possul **3 coordenadas**

ATRIBUTOS PREDITORES

CLASSES

100 sensores Possul **3 coordenadas**

ATRIBUTOS PREDITORES

CLASSES

100 sensores Possul **3** coordenadas

ATRIBUTOS PREDITORES

CLASSES

300

1X

1y

1Z

2X

2у

100y 100z

100 sensores Possul **3 coordenadas**

ATRIBUTOS PREDITORES

CLASSES

1X	1 y	1Z	2X	2у	 100y	100Z
1X	1 y	1Z	2X	2у	 100y	100Z

https://archive.ics.uci.edu/ml/datasets/Grammatical+Facial+Expressions

Projetos de Pesquisa

Projetos de Pesquisa

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

CONSIDERAÇÕES

Construiu a base de dados GFE

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

- Construiu a base de dados GFE
- Utilizou apenas 17 sensores

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

- Construiu a base de dados GFE
- Utilizou apenas 17 sensores
- Utilizou todas as coordenadas dos sensores

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

- Construiu a base de dados GFE
- Utilizou apenas 17 sensores
- Utilizou todas as coordenadas dos sensores
- Utilizou Redes Neurais para treinamento

FREITAS, F. de A.; BARBOSA, F. V.; PERES, S. M. Grammatical Facial Expressions Recognition with Machine Learning. In: International Florida Artificial Intelligence Research Society Conference. Flórida, Estados Unidos: AAAI Publications, 2014. p. 180–185.

- Construiu a base de dados GFE
- Utilizou apenas 17 sensores
- Utilizou todas as coordenadas dos sensores
- Utilizou Redes Neurais para treinamento
- Utilizou a métrica F-score

SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.

SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.

SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.

CONSIDERAÇÕES

Utilizou base de dados GFE do projeto 1

SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.

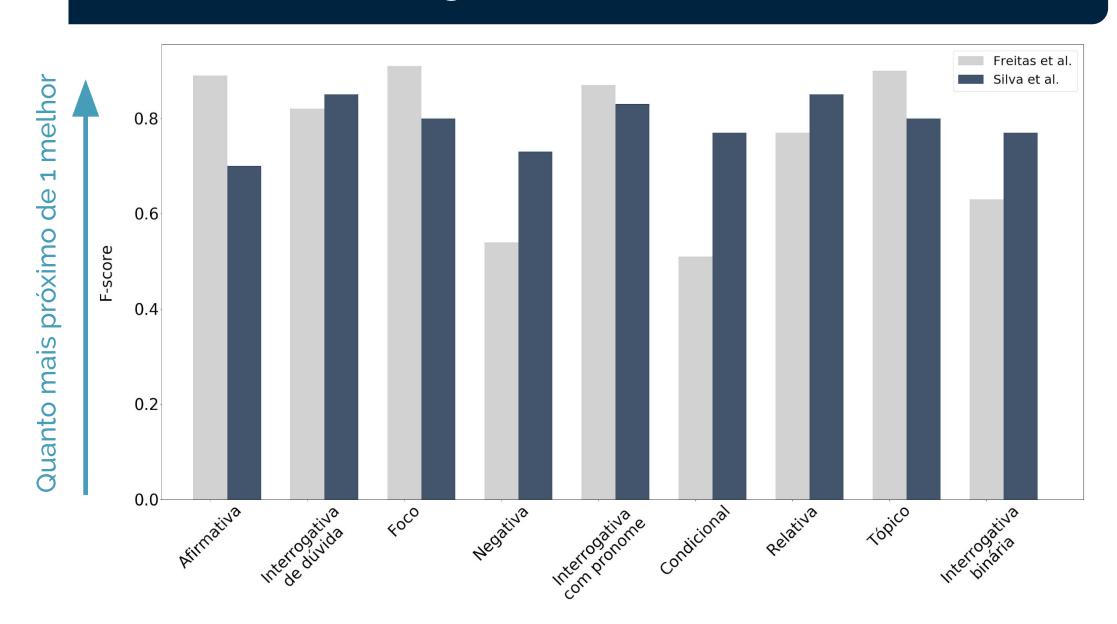
- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores

SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.

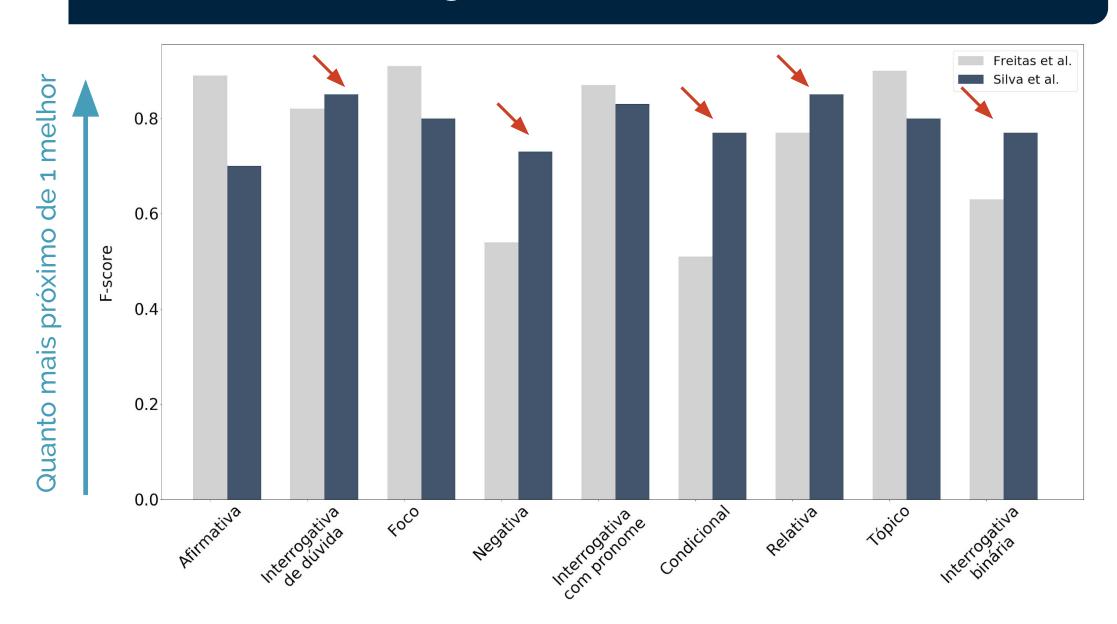
- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores

SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.

- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores
- Utilizou Redes Neurais para treinamento



SILVA, A. G. et al. Classificação de Expressões Faciais Negativas na Língua Brasileira de Sinais. In: *Anais do IV Encontro Regional de Informática da Região Norte I.* Manaus, Amazonas: ERIN, 2017. 2017. p. 80-88.


- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores
- Utilizou Redes Neurais para treinamento
- Utilizou a métrica F-score

Alguns Resultados

Alguns Resultados

Alguns Resultados

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018. 51p.

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

CONSIDERAÇÕES

Utilizou base de dados GFE do projeto 1

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores
- Utilizou 8 diferentes modelos para treinamento

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores
- Utilizou 8 diferentes modelos para treinamento
- Utilizou a métrica F-score

DE LUCCA, G. O.; GUEDES, E. B.; Reconhecimento de Expressões Faciais Gramaticais da Língua Brasileira de Sinais com Aprendizado de Máquina. Trabalho de Conclusão de Curso em Engenharia da Computação da Universidade do Estado do Amazonas. Manaus, Amazonas: ERIN, 2018, 51p.

- Utilizou base de dados GFE do projeto 1
- Utilizou apenas 17 sensores
- Utilizou apenas duas coordenadas dos sensores
- Utilizou 8 diferentes modelos para treinamento
- Utilizou a métrica F-score
- Utilizou diferentes abordagens para testar

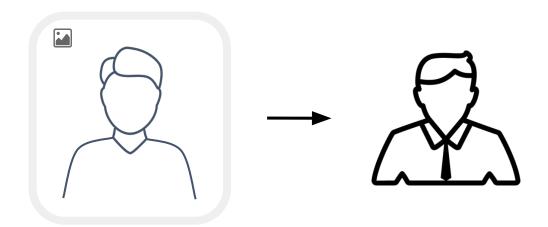
Outra abordagem

Outra abordagem

1x 1y 1z 2x 2y ... 100y 100z

Outra abordagem

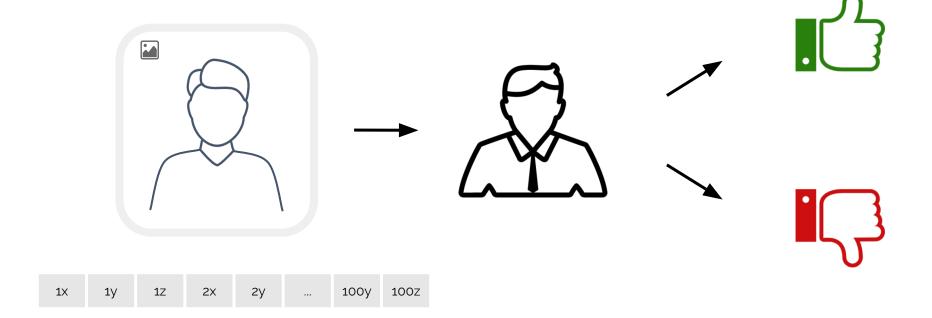
Expressão Negativa


1x 1y 1z 2x 2y ... 100y 100z

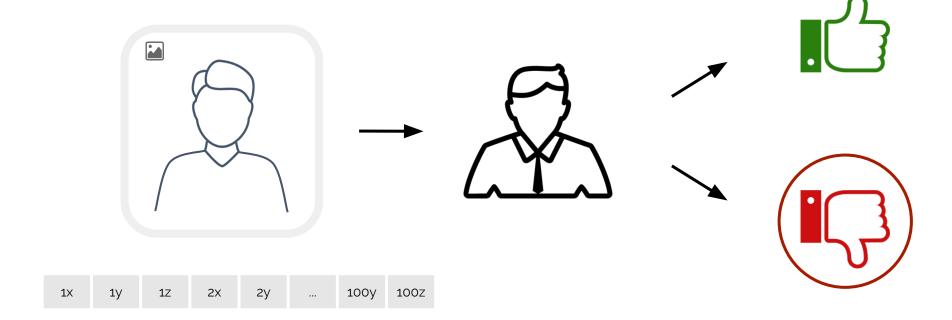
Outra abordagem

Expressão Negativa

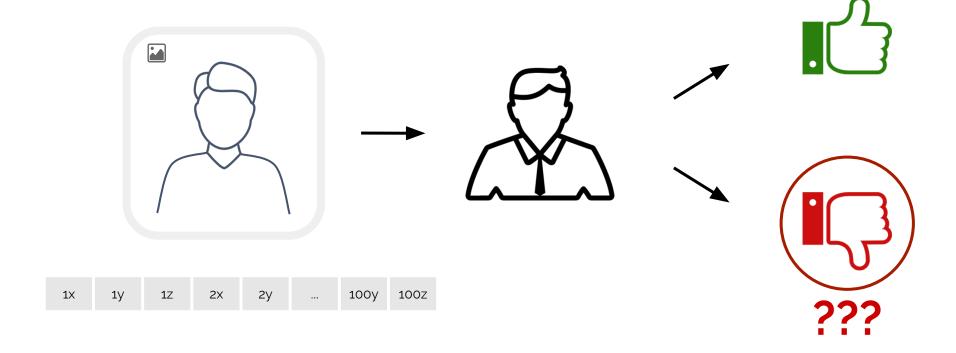
2X


2y

100y 100z


Outra abordagem

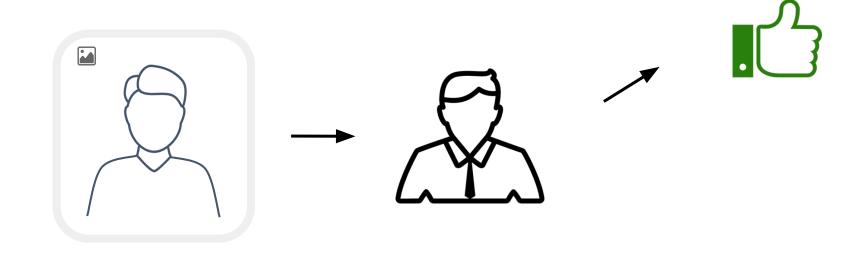
Expressão Negativa


Outra abordagem

Expressão Negativa

Outra abordagem

Expressão Negativa

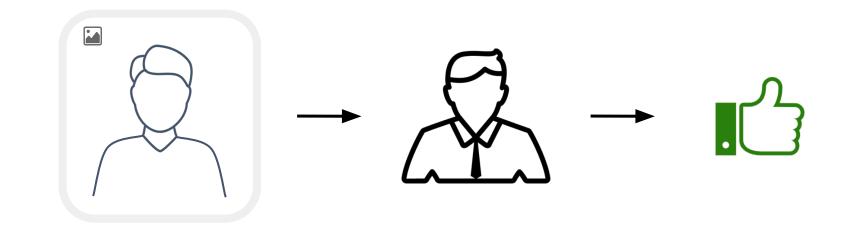


Outra abordagem

Expressão Negativa

2X

2y

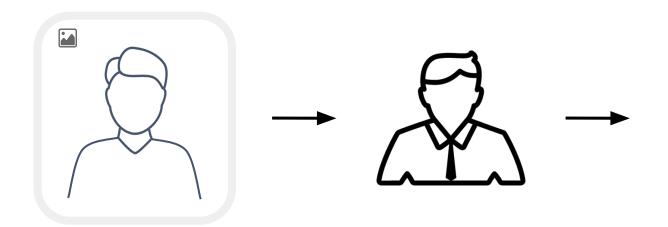


Outra abordagem

Expressão Negativa

2X

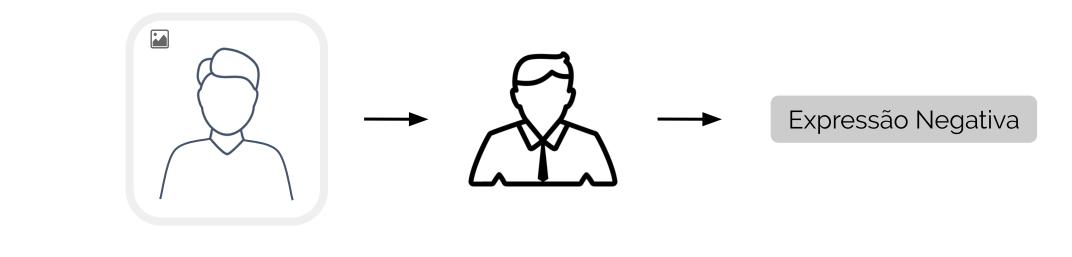
2y

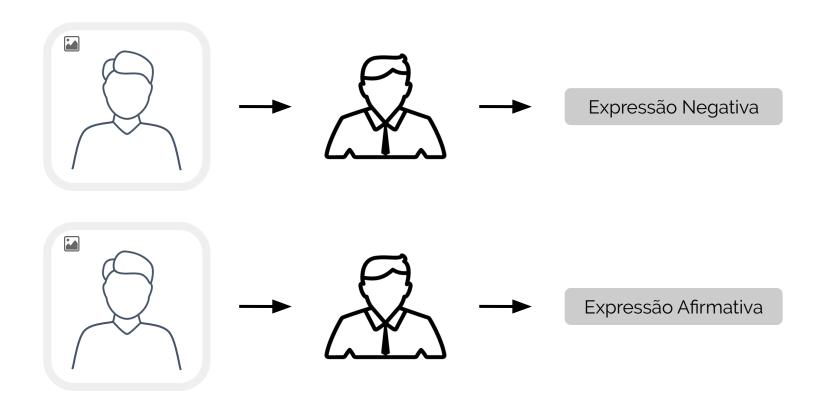


Outra abordagem

Expressão Negativa

2X


2y


Outra abordagem

2X

2y

Outra abordagem

Conjunto de Dados Outra abordagem

		ATRI	BUTOS	PREDIT	ORES			ATRIBUTO ALVO
1X	1 y	2X	2y	3x		17×	17y	AFIRMATIVA
								5000
1X	1 y	2X	2y	3x		17X	17 y	FOCO
1X	1y	2X	2y	3x	***	17X	17y	NEGATIVA
1X	1 y	2X	2y	3x		17X	17 y	RELATIVA
1X	1y	2X	2y	3x		17X	17 y	CONDICIONAL

						N /
M	od		\boldsymbol{C}	$\boldsymbol{\Delta}$	Δ	M
	LAIA					

Florestas Aleatórias

Bagging

Vizinhos mais Próximos

Máquinas Vetores de Suporte

Árvores de Decisão

Boosting

AdaBoosting

Redes Neurais

Modelo de AM
Florestas Aleatórias
Bagging
Vizinhos mais Próximos
Máquinas Vetores de Suporte
Árvores de Decisão
Boosting
AdaBoosting
Redes Neurais

Busca em Grid
16
3
20
4
4
3
6
5380

Modelo de AM
Florestas Aleatórias
Bagging
Vizinhos mais Próximos
Máquinas Vetores de Suporte
Árvores de Decisão
Boosting
AdaBoosting
Redes Neurais

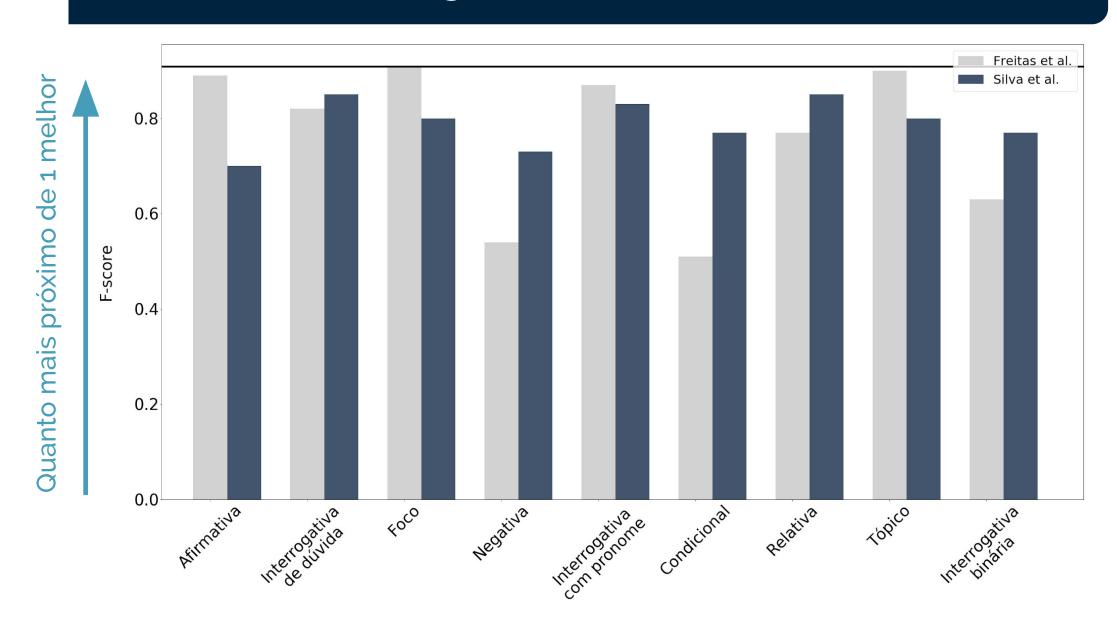
Busca em Grid
16
3
20
4
4
3
6
5380

Melhor F-score
0,90
0,89
0,88
0,87
0,84
0.73
0,44
0,33

Modelo de AM
Florestas Aleatórias
Bagging
Vizinhos mais Próximos
Máquinas Vetores de Suporte
Árvores de Decisão
Boosting
AdaBoosting
Redes Neurais

Busca em Grid
16
3
20
4
4
3
6
5380

Melhor F-score
0,90
0,89
0,88
0,87
0,84
0,73
0,44
0,33


Modelo de AM
Florestas Aleatórias
Bagging
Vizinhos mais Próximos
Máquinas Vetores de Suporte
Árvores de Decisão
Boosting
AdaBoosting
Redes Neurais

Busca em Grid
16
3
20
4
4
3
6
5380

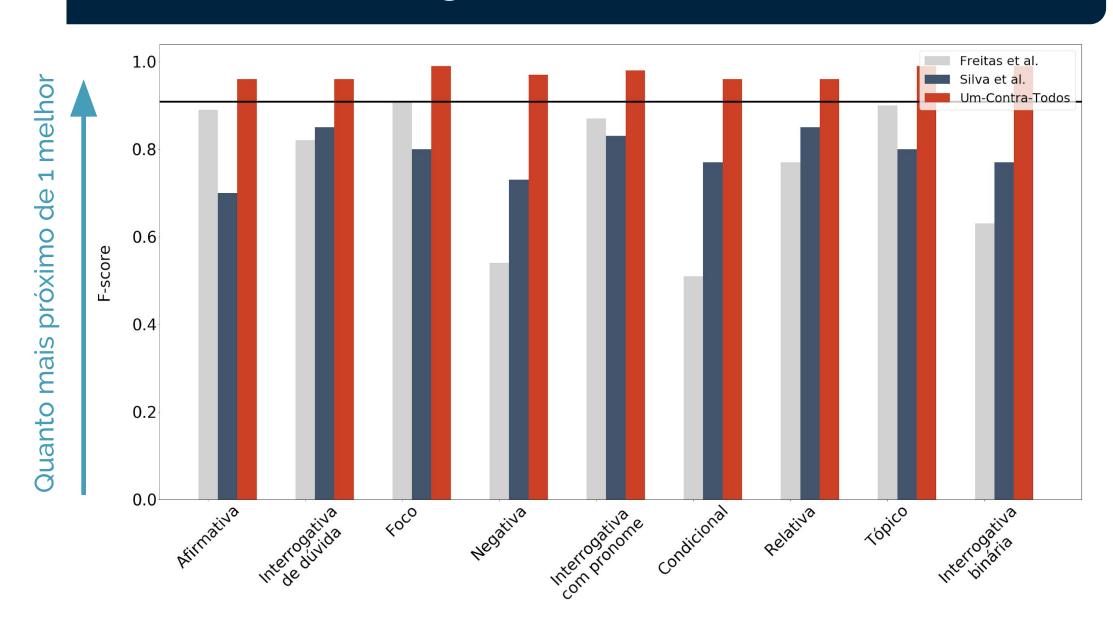
Melhor F-score							
0,90							
0,89							
0,88							
0,87							
0,84							
0,73							
0,44							
0,33							

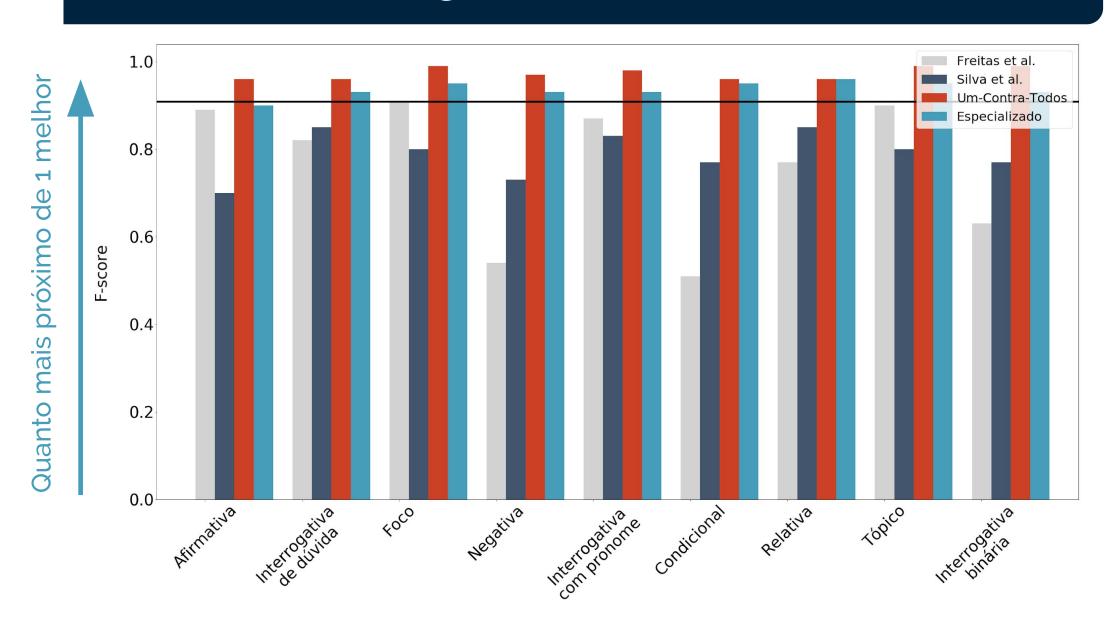
Modelo de AM								
Florestas Aleatórias								
Bagging								
Vizinhos mais Próximos								
Máquinas Vetores de Suporte								
Árvores de Decisão								
Boosting								
AdaBoosting								
Redes Neurais								

Busca em Grid	Melhor F-score
16	0,90
3	0,89
20	0,88
4	0,87
4	0,84
3	0,73
6	0.44
5380	0,33

Um-Contra-Todos

Um-Contra-Todos


		ATRI	ATRIBUTO ALVO					
1X	1 y	2X	2y	3x		17×	17y	AFIRMATIVA
		•		•				5000
1X	1y	2X	2y	3x	•••	17X	17 y	FOCO
1X	1 y	2X	2y	3x		17X	17y	AFIRMATIVA
1X	1 y	2X	2y	3x		17X	17 y	RELATIVA
1X	1y	2X	2y	3x		17X	17 y	CONDICIONAL


Um-Contra-Todos

		ATRI	ATRIBUTO ALVO					
1X	1 y	2X	2y	3×		17X	17y	AFIRMATIVA
45.6	45.7	0) (0) /	0).		470	470	
1X	1 y	2X	2y	3X	***	17X	17 y	Ο
1X	1 y	2X	2y	3x		17×	17y	AFIRMATIVA
1X	1 y	2X	2y	3x		17×	17 y	0
1X	1y	2X	2y	3X		17×	17y	0

Conjunto de Dados Um-Contra-Todos

		ATRI	ATRIBUTO ALVO					
1X	1 y	2X	2y	3x		17×	17 y	1
11/	11/	21/	2)./	27		17\/	17)/	Ο
1X	1 y	2X	2y	3x	***	17X	17 y	O
1X	1 y	2X	2y	3x		17×	17 y	1
4)./	4) /	2).(2)./	2).(47)	47)	
1X	1 y	2X	2y	3X	***	17X	17 y	О
1X	1 y	2X	2y	3x	***	17X	17 y	О

Qual o melhor modelo para o seu problema de aprendizado de máquina?

OBRIGADA!

Alguma pergunta?

Giovana de Lucca

linkedin.com/in/giovanadelucca giovanaadelucca@gmail.com twitter.com/pyladiesmanaus manaus@pyladies.com